{ "cells": [ { "cell_type": "markdown", "id": "db95be89-6785-49a7-825a-f6669ffb9a0d", "metadata": {}, "source": [ "# Summary of model base parameters" ] }, { "cell_type": "markdown", "id": "37b749af-96a6-425c-a5f7-b63cca1864af", "metadata": {}, "source": [ "Import libraries and read data" ] }, { "cell_type": "code", "execution_count": 1, "id": "d57b015e-f3a8-49e8-86b7-77c46c9c8693", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "data = pd.read_csv('output/performance_base.csv')" ] }, { "cell_type": "markdown", "id": "417b9471-b535-487b-98df-7f4a6dd73f9b", "metadata": {}, "source": [ "Get descriptive statistics, and save" ] }, { "cell_type": "code", "execution_count": 2, "id": "80d716d2-6986-425a-970f-495768afe172", "metadata": {}, "outputs": [], "source": [ "stats = data.describe().T\n", "stats.to_csv('./output/base_parameters_stats.csv')" ] }, { "cell_type": "code", "execution_count": 3, "id": "94a69565-7b98-4824-b841-0f790a9ea973", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
countmeanstdmin25%50%75%max
thrombolysis_rate132.00.1145360.0354490.0153060.0932390.1095470.1333140.243174
admissions132.0572.777778277.416470101.000000377.666667544.166667755.0833332039.333333
80_plus132.00.4256350.0564160.2923080.3870890.4275730.4578960.576220
onset_known132.00.6656790.1340640.3447840.5735930.6419780.7528810.988275
known_arrival_within_4hrs132.00.6007430.0897330.2570340.5578760.6085420.6623250.813584
onset_arrival_mins_mu132.04.5716550.0985003.7678904.5300714.5798014.6286304.763117
onset_arrival_mins_sigma132.00.5597290.1212090.4350670.5166370.5473100.5857101.800721
scan_within_4_hrs132.00.9475030.0301630.8473280.9328280.9538080.9691911.000000
arrival_scan_arrival_mins_mu132.03.2798220.4092511.6657003.0296753.3098993.5721564.235924
arrival_scan_arrival_mins_sigma132.00.9414380.2206010.5493010.7875210.8909611.0342301.751363
onset_scan_4_hrs132.00.8746210.0432450.6271780.8525080.8768330.9040590.962230
eligable132.00.3383120.0826370.1111110.2763550.3316510.3988600.531940
scan_needle_mins_mu132.03.4259930.3423372.5727143.2040643.4262903.6769804.408589
scan_needle_mins_sigma132.00.6898880.1560390.3660170.5791620.6617710.7931681.282829
\n", "
" ], "text/plain": [ " count mean std min \\\n", "thrombolysis_rate 132.0 0.114536 0.035449 0.015306 \n", "admissions 132.0 572.777778 277.416470 101.000000 \n", "80_plus 132.0 0.425635 0.056416 0.292308 \n", "onset_known 132.0 0.665679 0.134064 0.344784 \n", "known_arrival_within_4hrs 132.0 0.600743 0.089733 0.257034 \n", "onset_arrival_mins_mu 132.0 4.571655 0.098500 3.767890 \n", "onset_arrival_mins_sigma 132.0 0.559729 0.121209 0.435067 \n", "scan_within_4_hrs 132.0 0.947503 0.030163 0.847328 \n", "arrival_scan_arrival_mins_mu 132.0 3.279822 0.409251 1.665700 \n", "arrival_scan_arrival_mins_sigma 132.0 0.941438 0.220601 0.549301 \n", "onset_scan_4_hrs 132.0 0.874621 0.043245 0.627178 \n", "eligable 132.0 0.338312 0.082637 0.111111 \n", "scan_needle_mins_mu 132.0 3.425993 0.342337 2.572714 \n", "scan_needle_mins_sigma 132.0 0.689888 0.156039 0.366017 \n", "\n", " 25% 50% 75% \\\n", "thrombolysis_rate 0.093239 0.109547 0.133314 \n", "admissions 377.666667 544.166667 755.083333 \n", "80_plus 0.387089 0.427573 0.457896 \n", "onset_known 0.573593 0.641978 0.752881 \n", "known_arrival_within_4hrs 0.557876 0.608542 0.662325 \n", "onset_arrival_mins_mu 4.530071 4.579801 4.628630 \n", "onset_arrival_mins_sigma 0.516637 0.547310 0.585710 \n", "scan_within_4_hrs 0.932828 0.953808 0.969191 \n", "arrival_scan_arrival_mins_mu 3.029675 3.309899 3.572156 \n", "arrival_scan_arrival_mins_sigma 0.787521 0.890961 1.034230 \n", "onset_scan_4_hrs 0.852508 0.876833 0.904059 \n", "eligable 0.276355 0.331651 0.398860 \n", "scan_needle_mins_mu 3.204064 3.426290 3.676980 \n", "scan_needle_mins_sigma 0.579162 0.661771 0.793168 \n", "\n", " max \n", "thrombolysis_rate 0.243174 \n", "admissions 2039.333333 \n", "80_plus 0.576220 \n", "onset_known 0.988275 \n", "known_arrival_within_4hrs 0.813584 \n", "onset_arrival_mins_mu 4.763117 \n", "onset_arrival_mins_sigma 1.800721 \n", "scan_within_4_hrs 1.000000 \n", "arrival_scan_arrival_mins_mu 4.235924 \n", "arrival_scan_arrival_mins_sigma 1.751363 \n", "onset_scan_4_hrs 0.962230 \n", "eligable 0.531940 \n", "scan_needle_mins_mu 4.408589 \n", "scan_needle_mins_sigma 1.282829 " ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "stats" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" } }, "nbformat": 4, "nbformat_minor": 5 }