{ "cells": [ { "cell_type": "markdown", "id": "9dffd99f-e5e4-4655-971f-ac701cd93c54", "metadata": {}, "source": [ "# Plotting thrombolysis rate by feature value for low and high thrombolysing hopsitals\n", "\n", "## Plain English summary\n", "\n", "This experiment plots the relationships between feature values and thrombolysis use for low and high thrombolysing hospitals. The high and low thrombolysing hopsitals are taken as the top and bottom 30 hospitals as ranked by the predicted thrombolysis use in the same 10k cohort of patients. We also call the top 30 thrombolysing hospitals 'benchmark' hospitals.\n", "\n", "We find that thrombolysis use in low thrombolysing hospitals follows the same general relationship with feature values as the high thrombolysing hospitals, but thrombolysis is consistently lower.\n", "\n", "## Aims\n", "\n", "* Plots the relationships between feature values and thrombolysis use for low and high thrombolysing hospitals\n", "\n", "## Observations\n", "\n", "* Thrombolysis use in low thrombolysing hospitals follows the same general relationship with feature values as the high thrombolysing hospitals, but thrombolysis is consistently lower." ] }, { "cell_type": "code", "execution_count": 1, "id": "876983b4-d86f-4e16-adfa-2f411f4ffdcd", "metadata": {}, "outputs": [], "source": [ "# Turn warnings off to keep notebook tidy\n", "import warnings\n", "warnings.filterwarnings(\"ignore\")\n", "\n", "import json\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import pandas as pd" ] }, { "cell_type": "markdown", "id": "8714f148-386b-4255-962a-70d884c2b6e9", "metadata": {}, "source": [ "## Read in JSON file\n", "\n", "Contains a dictionary for plain English feature names for the 8 features selected in the model. Use these as the column titles in the DataFrame." ] }, { "cell_type": "code", "execution_count": 2, "id": "fd650e1e-843b-4012-8f1d-0734e574723c", "metadata": {}, "outputs": [], "source": [ "with open(\"./output/feature_name_dict.json\") as json_file:\n", " feature_name_dict = json.load(json_file)" ] }, { "cell_type": "markdown", "id": "434d8899-7e9e-4554-8cfd-015e61038e84", "metadata": {}, "source": [ "## Load data on predicted 10k cohort thrombolysis use at each hospital\n", "Use the hospitals thrombolysis rate on the same set of 10k patients to select the 30 hospitals with the highest thrombolysis rates." ] }, { "cell_type": "code", "execution_count": 3, "id": "40cfc68d-ecef-4658-ba0d-f0874b60aaff", "metadata": {}, "outputs": [], "source": [ "thrombolysis_by_hosp = pd.read_csv(\n", " './output/10k_thrombolysis_rate_by_hosp_key_features.csv', index_col='stroke_team')\n", "thrombolysis_by_hosp.sort_values(\n", " 'Thrombolysis rate', ascending=False, inplace=True)" ] }, { "cell_type": "code", "execution_count": 4, "id": "a505df68-ddc3-45d5-a83a-c9396dab956a", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Thrombolysis rate
stroke_team
VKKDD9172T0.4610
GKONI0110I0.4356
CNBGF2713O0.4207
HPWIF9956L0.4191
MHMYL4920B0.3981
\n", "
" ], "text/plain": [ " Thrombolysis rate\n", "stroke_team \n", "VKKDD9172T 0.4610\n", "GKONI0110I 0.4356\n", "CNBGF2713O 0.4207\n", "HPWIF9956L 0.4191\n", "MHMYL4920B 0.3981" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "thrombolysis_by_hosp.head()" ] }, { "cell_type": "markdown", "id": "8e14fc49-154e-4468-bf24-3d7eff7fb22e", "metadata": {}, "source": [ "## Load 10K test data" ] }, { "cell_type": "code", "execution_count": 5, "id": "f3e38483-8e1e-44de-85b2-ab7267265975", "metadata": {}, "outputs": [], "source": [ "data_loc = '../data/10k_training_test/'\n", "test = pd.read_csv(data_loc + 'cohort_10000_test.csv')" ] }, { "cell_type": "code", "execution_count": 6, "id": "754f627d-6733-450c-b659-3cce3c934c44", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
StrokeTeamS1AgeOnArrivalS1OnsetToArrival_minS2RankinBeforeStrokeLocLocQuestionsLocCommandsBestGazeVisualFacialPalsy...AFAnticoagulentHeparin_missingS2NewAFDiagnosis_NoS2NewAFDiagnosis_YesS2NewAFDiagnosis_missingS2StrokeType_InfarctionS2TIAInLastMonth_NoS2TIAInLastMonth_No butS2TIAInLastMonth_YesS2TIAInLastMonth_missingS2Thrombolysis
0VUHVS8909F72.580.0032.02.02.03.03.0...0100000010
1HZNVT9936G72.587.0200.00.00.00.01.0...0001100010
2FAJKD7118X67.5140.0302.00.01.02.02.0...0100100011
3TPXYE0168D77.5108.0000.00.00.01.02.0...1001100011
4DNOYM6465G87.551.0411.01.00.01.01.0...0001100010
\n", "

5 rows × 87 columns

\n", "
" ], "text/plain": [ " StrokeTeam S1AgeOnArrival S1OnsetToArrival_min S2RankinBeforeStroke \\\n", "0 VUHVS8909F 72.5 80.0 0 \n", "1 HZNVT9936G 72.5 87.0 2 \n", "2 FAJKD7118X 67.5 140.0 3 \n", "3 TPXYE0168D 77.5 108.0 0 \n", "4 DNOYM6465G 87.5 51.0 4 \n", "\n", " Loc LocQuestions LocCommands BestGaze Visual FacialPalsy ... \\\n", "0 3 2.0 2.0 2.0 3.0 3.0 ... \n", "1 0 0.0 0.0 0.0 0.0 1.0 ... \n", "2 0 2.0 0.0 1.0 2.0 2.0 ... \n", "3 0 0.0 0.0 0.0 1.0 2.0 ... \n", "4 1 1.0 1.0 0.0 1.0 1.0 ... \n", "\n", " AFAnticoagulentHeparin_missing S2NewAFDiagnosis_No S2NewAFDiagnosis_Yes \\\n", "0 0 1 0 \n", "1 0 0 0 \n", "2 0 1 0 \n", "3 1 0 0 \n", "4 0 0 0 \n", "\n", " S2NewAFDiagnosis_missing S2StrokeType_Infarction S2TIAInLastMonth_No \\\n", "0 0 0 0 \n", "1 1 1 0 \n", "2 0 1 0 \n", "3 1 1 0 \n", "4 1 1 0 \n", "\n", " S2TIAInLastMonth_No but S2TIAInLastMonth_Yes S2TIAInLastMonth_missing \\\n", "0 0 0 1 \n", "1 0 0 1 \n", "2 0 0 1 \n", "3 0 0 1 \n", "4 0 0 1 \n", "\n", " S2Thrombolysis \n", "0 0 \n", "1 0 \n", "2 1 \n", "3 1 \n", "4 0 \n", "\n", "[5 rows x 87 columns]" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "test.head()" ] }, { "cell_type": "markdown", "id": "0d2af690-a15a-4377-a48f-2aeb7f49ee06", "metadata": {}, "source": [ "## Get data for benchmark hospitals and low thrombolysing hopsitals" ] }, { "cell_type": "code", "execution_count": 7, "id": "7d5d91c9-d8f7-4be5-846c-c361f9682814", "metadata": {}, "outputs": [], "source": [ "# Get list of key features to plot\n", "number_of_features_to_use = 8\n", "key_features = pd.read_csv('./output/feature_selection.csv')\n", "key_features = list(key_features['feature'])[:number_of_features_to_use]\n", "key_features.append('S2Thrombolysis')\n", "\n", "# Get benchmark data\n", "benchmark_hospitals = list(thrombolysis_by_hosp.index)[0:30]\n", "mask = test.apply(lambda x: x['StrokeTeam'] in benchmark_hospitals, axis=1)\n", "benchmark_data = test[mask]\n", "benchmark_data = benchmark_data[key_features]\n", "benchmark_data.rename(columns=feature_name_dict, inplace=True)\n", "benchmark_data.sort_values('Stroke team', inplace=True, axis=0)\n", "\n", "# Get low thrombolysis hospital data\n", "low_thrombolysis_hospitals = list(thrombolysis_by_hosp.index)[-30:]\n", "mask = test.apply(lambda x: x['StrokeTeam'] in low_thrombolysis_hospitals, axis=1)\n", "low_thrombolysis_data = test[mask]\n", "low_thrombolysis_data = low_thrombolysis_data[key_features]\n", "low_thrombolysis_data.rename(columns=feature_name_dict, inplace=True)\n", "low_thrombolysis_data.sort_values('Stroke team', inplace=True, axis=0)" ] }, { "cell_type": "markdown", "id": "ee80c2d5-35dc-44d2-8ba4-5b8af8e6a9c3", "metadata": {}, "source": [ "## Plot thrombolysis by feature value" ] }, { "cell_type": "code", "execution_count": 20, "id": "0ce1d906-fa8e-4ca0-8548-e8d30ae73caf", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0wAAAJuCAYAAACDjoI+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd5hT5fLHP0PvHVnpKCpFiooo9q6o164XXKXZuJZrr1wVC9futevVn10U7KKoWLmCjaKgUhSU3qRXabvv7485h81mk2ySTc98nidPkpNzzvtmN5mceWfmO+KcwzAMwzAMwzAMwyhLpXRPwDAMwzAMwzAMI1Mxh8kwDMMwDMMwDCMM5jAZhmEYhmEYhmGEwRwmwzAMwzAMwzCMMJjDZBiGYRiGYRiGEQZzmAzDMAzDMAzDMMJgDlOOICLTROSwBJxnrogcVfEZZQ+J+tsZhlExRKSZiHwlIutF5IEUjLdBRHZJ9jiGYaQfEXlBRO5M9zwSgYjcJCL/l+555BPmMGUIIjJWRFaLSPV4jnfOdXbOjU3wtEohIm1FxIlIlWSOk0xCGcxU/O0MI5+JYSHmQmAFUM85d3WC5zBWRM4P3Oacq+Oc+yOR4xiGER8icpCIfCMia0VklYh8LSL7eq8NEJHx6Z5jpuCc+7dz7nzIjWuzbMAcpgxARNoCBwMOOKmcfSsHPbcviGEYuUIbYLqLo6O62ULDyF5EpB7wAfAo0AhoAdwGbInhHJXL3yv7MVuXHsxhygz6Ad8BLwD9A1/wIiJPisiHIrIRONxbrb1eRH4CNopIFX8FV0Sai8hfItIo4Bx7icgKEakqIruKyBcistLbNlxEGkQ5z6+8+zVeKksvEakkIv8SkXki8qeIvCQi9cOdQER6isgkEVknIstE5MGA1/zVpTUiskBEBnjbTxCRH71jFojI0IBj/JWV/iIy33tPQ8KMfSFQCFznzf99b/uO1W8RGSoib4jIK15a0M8isruI3Oi9vwUickzAOeuLyLMiskREFonInflitA0jVvxVYhG534uozxGR3t5rL6D2z/9+HuXZi289m7BERB4TkWoB53MicomIzAJmedtOFpEpnr34XUSOE5Fh6KLUY965Hws4vr33uL5nv5Z79uxfIlKpvHkbhpEQdgdwzr3mnCtyzv3lnPvEOfeTiHQEngJ6ed/fNRD2+qijaDR5jWi6fchFaBGpKyJfisgjonQQkU9FI1u/ishZ4Sbq2YM/vGuEOSJSGPDaIBGZ4dmJMSLSxtv+lIjcH3Se90TkKu9xcxF5y7M/c0TknwH7DRWRN73rknXAAG/bK94uwddmh3rvo0vAOXYSvTZsGuX/wwjGOWe3NN+A2cDFwD7ANqBZwGsvAGuBA1EHtwYwF5gCtAJqevvNBY7yHn8BXBBwjvuAp7zH7YGjgepAU/SL9lDAvjvOE2KebdEoWJWAbYO8+e8C1AHeBl6O8F6/Bc71HtcB9vcetwbWA32BqkBjoLv32mFAF+/9dwWWAacEzekZoCbQDV2R6hhm/BeAO4O2Bf7thgKbgWOBKsBLwBxgiDevC4A5Ace+C/wXqA3sBEwALkr3Z8pudsukm/8dAwZ4Nu4CoDLwD2AxIN5+pb6fnk3c3/sutgVmAFcEvO6AT9EV6ZpAT9ReHu3ZixZAB2/fscD5QfNyQHvv8UvAe0Bdb6zfgPO81yLO2252s1vFbkA9YCXwItAbaBj0+gBgfNC2Fyh9fVQXvR65CagGHIFeV+wRsP+d6PXFBN/WeL/fC4CBnq3ZG00N7hxinrWBdQHn3NnfDzjFG7+jd55/Ad94rx3ijeHbuobAX0Bzb+6TgVu8ee8C/AEc6+071LM/p3j71vS2veK93pay12ZPAPcEPL8ceD/d/+dsvlmEKc2IyEFoGsrrzrnJwO/A2UG7veec+9o5V+yc2+xte8Q5t8A591eI076KOh6IiAB9vG0452Y75z51zm1xzi0HHgQOrcBbKAQedM794ZzbANwI9JHwIeNtQHsRaeKc2+Cc+y7gPJ85XV3a5pxb6Zyb4s15rHPuZ+/9/wS8FmLOtzldkZoKTEUdp3gZ55wb45zbDryBOpZ3O+e2ASOAtiLSQESaoYb9CufcRufcn8B/0L+3YRihmeece8Y5V4ReHO0MNAu1o3NusnPuO+fcdufcXHRxIvi7f5dzbpVnC88DnvNsXLFzbpFzbmZ5E/Kiwn8HbnTOrffGegA4N555G4YRG865dcBBlCyALheRUd7vbCR2XB8B3dGF2Ludc1udc1+gaX59A/ZvDvwPeMM59y9v24nAXOfc856t+QF4CzgjzJjFwJ4iUtM5t8Q5N83bfhFqj2Z41w//Brp7UaZx3ns72Nv3DOBb59xiYF+gqXPudm/ef3h/g8BriW+dc+96di3UdV8wLwJn+1Fy1Ja9HMVxRhjMYUo//YFPnHMrvOevEpSWh65KBBNqm8+baOi6Obqq4dAvqx+WHeGlj60DXgGahDqJF9r1b63DjNUcmBfwfB66stJMRAoDjv/Ie/08NPQ+U0QmisiJ3vZWqLMYah77eaHz5SKyFhgcYs5LAx5vQo1mvCwLePwXsMK7SPKf452/DRp1WuKF/9egF3Q7VWBsw8h1dnxXnXObvIchv6+i6bAfiMhSz179m7Lf/UBbGNaOlEMTdGU32Ja1iGfehmHEjudoDHDOtQT2RK8vHirnsMDvf3Nggec8+QR/j09AIzRPBWxrA+zn/457v+WFQEGIOW5EF1cGo7/9o0WkQ8B5Hg44xypAgBbOOYcuuPrO29nA8IDjmgeNfxOlF2QiXfOVwTn3PbARONSbX3tgVCznMEpjhWNpRERqAmcBlUXE/zGuDjQQkW5etATU4QkmbFG0c26NiHzinbsj8Jr3ZQW4yzu2q3NupYicAjwW5jylLgb8XNwgFqNfdp/WwHZgmXNuOCUGwT/nLKCvt+pxGvCmiDRGjUHPMG/pVW+OvZ1zm0XkIcI4eVEQczF5BBag6X9NvNUkwzASy5PAj0Bf59x6EbmCsqu+gd/pBcCuYc4V6bu/Ao1+twGme9taA4tinbBhGBXHOTdTtK7xIn9TuF0DHi8GWolIpQCnqTWaXuvzDJoO96GIHOc5QAuA/znnjo5ybmOAMd413J3eOQ/2zjPMu/YJxWvAJyJyN7AfcKq3fQGa6r9bpGHjeO1F4Bx0sefNgAwlIw4swpReTgGKgE5oKLk76uCMQ4UgKsKr3jlO9x771AU2oMWBLYBrYzjncjQUHdi35DXgShFpJyJ10BXgkeEcCBE5R0SaesZsjbe5CHWsjhKRs0RFLBqLSPeAOa/ynKWelE1ZjIVlQfOPG+fcEuAT4AERqScqgLGriFQkxdEwjBLqovUCG7xV0n+Us/+zwEAROdL7PrYIWP0N+933IsivA8NEi8HbAFehEXjDMJKMJ7pwtYi09J63QqMxftr+MqClBIi+hMCPqlwnKnJ1GPA3NLITyKXAr8AHntPzAbC7iJzrHVdVRPYVFZsInmczETlJRGqjC6Yb0GsY0KjVjSLS2du3voic6R/rnPsRvY76P2CMc26N99IEYJ2omFdNEaksInuKJ6keBaGuzUBT8E5FnaaXojyXEQZzmNJLf+B559x859xS/4ZGUwoj1AFFwyhgNzTSMzVg+21oQeNaYDQq0hAVXhrKMOBrL2y8P/Ac+qX8ChVH2AxcFuE0xwHTRGQD8DDQxzm32Tk3HzgeuBoNY0+hpA7pYuB2EVmPFkW+Hu2cQ/As0Mmb/7sVOI9PPzSVZzqwGk2H3DkB5zUMA65BF0jWo6u4IyPt7JybgBZu/we1cf+jJAL+MHCGqHrVIyEOvwy92PoDGI8uND2XgPdgGEb5rEejLt+LKt59B/yCXhOAillNA5aKyIpQJ3DObUVbs/RGo8ZPAP2C6xi9jJsL0cjOe2h0+Ri0ZmgxGpG5B834CaaSN6fF6LXKoeg1Cs65d7zjRngpxL94cwnkNVQAZ8dCtrdg8zd00XyON/f/A8IqDge9n1DXZjjnFgI/EFCWYcSPr9ZhGIZhGIZhGEaOICLPAYsDBC6MOLEaJsMwDMMwDMPIIUSkLVorvleap5ITWEqeYRiGYRiGYeQIInIHmhJ4n3NuTrrnkwtYSp5hGIZhGIZhGEYYLMJkGIZhGIZhGIYRBnOYDMMwDMMwDMMwwpB1og9NmjRxbdu2Tfc0DCOvmDx58grnXNN0zyOVmK0xjNSSj3YGzNYYRqqJx9ZkncPUtm1bJk2alO5pGEZeISLz0j2HVGO2xjBSSz7aGTBbYxipJh5bYyl5hmEYhmEYhmEYYTCHyTAMwzAMwzCyjOHDoW1bqFRJ74cPT/eMcpekOkwicpyI/Cois0XkhjD7HCYiU0Rkmoj8L5nzMQwjNzFbYxhGsjE7Y2QSw4fDhRfCvHngnN5feKE5TckiaTVMIlIZeBw4GlgITBSRUc656QH7NACeAI5zzs0XkZ2SNR8jd9i2bRsLFy5k8+bN6Z5KzlGjRg1atmxJ1apV0z2VqDFbYyQDszPJw+yMYVScIUNg06bS2zZt0u2FhemZUy6TTNGHnsBs59wfACIyAjgZmB6wz9nA2865+QDOuT+TOB8jR1i4cCF169albdu2iEi6p5MzOOdYuXIlCxcupF27dumeTiyYrTESjtmZ5GB2xjASw/z5sW03KkYyU/JaAAsCni/0tgWyO9BQRMaKyGQR6RfqRCJyoYhMEpFJy5cvT9J0jWxh8+bNNG7c2C5iEoyI0Lhx42xcUTdbYyQcszPJweyMYrbGqCitW8e23agYyXSYQv3KuKDnVYB9gBOAY4GbRWT3Mgc597RzrodzrkfTpnnXosEIgV3EJIcs/buarTGSQpZ+HzKeLP27JszOgNkao+IMGwbVqpXeVquWbjcSTzIdpoVAq4DnLYHFIfb52Dm30Tm3AvgK6JbEORlGhVi5ciXdu3ene/fuFBQU0KJFix3Pt27dGvP53nvvPbp27Ur37t3p0aMH48eP3/Haxx9/zB577EH79u25++67E/k2cg2zNUbOYbYm4zA7Y2QUhYXQvTv46w8NG8LTT1v9UtJwziXlhq60/AG0A6oBU4HOQft0BD739q0F/ALsGem8++yzjzPym+nTp8e0/yuvONemjXMiev/KK4mZx6233uruu+++Cp1j/fr1rri42Dnn3NSpU90ee+zhnHNu+/btbpdddnG///6727Jli+vataubNm1aheccDaH+vsAklyRbUdGb2RojGWSKnXEuN22N2RmzNUbF2LLFuXr1nDv/fOeqV3fu2mvTPaPsIR5bk7QIk3NuO3ApMAaYAbzunJsmIoNFZLC3zwzgY+AnYALwf865X5I1JyP/SIXs5ueff85ee+1Fly5dGDRoEFu2bAG0e/v1119Pz5496dmzJ7Nnzy5zbJ06dXakp2zcuHHH4wkTJtC+fXt22WUXqlWrRp8+fXjvvfcSN+kcwmyNkW5SJe9rtiZ9mJ0xMo3x42HdOjjxRGjeHBYtSveMcptkquThnPsQ+DBo21NBz+8D7kvmPIzc5YorYMqU8K9/9x141xQ72LQJzjsPnnkm9DHdu8NDD0U3/ubNmxkwYACff/45u+++O/369ePJJ5/kiiuuAKBevXpMmDCBl156iSuuuIIPPvigzDneeecdbrzxRv78809Gjx4NwKJFi2jVqiT7o2XLlnz//ffRTSoPMVtjJJN02xkwW5MJmJ0xMonRo7WG6cgj1WFaHJwgaiSUpDauNYx0E3wRU972WCkqKqJdu3bsvrvW9fbv35+vvvpqx+t9+/bdcf/tt9+GPMepp57KzJkzeffdd7n55psB/PSOUmRpobRh5DzJtjNgtsYwjNKMHg2HHw516kCLFhZhSjZJjTAZRrIpb4W2bVtNjwmmTRsYO7bi49euXTvi64EXHuVdhBxyyCH8/vvvrFixgpYtW7JgQYmC7cKFC2nevHnFJmsYRlyk286A2RrDMEqYPRt+/RUuuUSft2gBH3ygKcG23pEcLMJk5DTDhqnMZiCJlN3cvHkzc+fO3VEz8PLLL3PooYfueH3kyJE77nv16lXm+NmzZ+9Y4f3hhx/YunUrjRs3Zt9992XWrFnMmTOHrVu3MmLECE466aTETNowjISSbDsDZmsMwyjBy6jlhBP0vkULTQNeuzZ9c8p1LMJk5DS+vOaQIdr9unVrvYhJlOxmjRo1eP755znzzDPZvn07++67L4MHD97x+pYtW9hvv/0oLi7mtddeK3P8W2+9xUsvvUTVqlWpWbMmI0eORESoUqUKjz32GMceeyxFRUUMGjSIzp07J2bShmEklGTbGTBbY6Sf4cOT+xk3omf0aOjYEXbZRZ+38FooL1oEDRqkbVo5jYTKX85kevTo4SZNmpTuaRhpZMaMGXTs2DHd0yiXtm3bMmnSJJo0aZLuqcREqL+viEx2zvVI05TSgtma/CZb7Axkp60xO1NCNtgaXwly06aSbbVqWd+fdLB+PTRuDJdfDvd58iLjxsEhh8CYMXDMMemdXzYQj62xlDzDMAzDMAwjLEOGlHaWQJ8PGZKe+eQzn30G27apnLiPX3ZoSnnJw1LyDCNJzJ07N91TMAwjDzBbYySb+fNj224kj9GjoX59OOCAkm2+w2RKecnDIkyGYRiGYRhGWFq3jm27kRyKi9VhOvZYqFq1ZHvNmtCokTlMycQcJsMwDMMwDCMsw4ZBlaCcpEQrQRrl8+OPsHRp6XQ8H+vFlFzMYTIMwzAMwzDC0revOkg1a+rzqlVN8CEdjB6tfZaOO67sa+YwJRdzmAzDMAzDMIywfPcdrFsHzz4L99+vogOHHJLuWeUfH3wA++8PTZuWfc0cpuRiDpNhxEHlypXp3r073bp1Y++99+abb76JuP/cuXN59dVXdzyfMmUKH374YVLmdvPNN9O1a1e6d+/OMcccw+IA2Zy77rqL9u3bs8ceezBmzJikjG8YRmIwO2NkCm+9BdWqaaPU3r1120cfpXdO+cTw4dCqFUycCNOn6/NgmjeHZctg+/bUzy8fMIfJyG0KCjR+HXwrKKjQaWvWrMmUKVOYOnUqd911FzfeeGPE/VN5IXPttdfy008/MWXKFE488URuv/12AKZPn86IESOYNm0aH3/8MRdffDFFRUVJmYNh5BVmZ8zO5DDOwdtvw1FHQb162jC1dWtzmFKF3wNr4UJ9vnatPg92mlq00P/V0qWpn2M+YA6TkdssWxbb9jhYt24dDRs2BMA5x7XXXsuee+5Jly5dGDlyJAA33HAD48aNo3v37txzzz3ccsstjBw5ku7duzNy5EhWrVrFKaecQteuXdl///356aefABg6dCj9+/fnmGOOoW3btrz99ttcd911dOnSheOOO45t27aVmU+9evV2PN64cSMiAsB7771Hnz59qF69Ou3ataN9+/ZMmDAhYX8Hw8hbzM6YnclhpkyBuXPh9NP1uYhGmT77DLZuTefM8oNoe2C1aKH3lpaXHKwPk5H9HHZY2W1nnQUXX1z+sStWwBlnlN42dmy5h/311190796dzZs3s2TJEr744gsA3n777R0rwitWrGDfffflkEMO4e677+b+++/ngw8+AKBZs2ZMmjSJxx57DIDLLruMvfbai3fffZcvvviCfv36MWXKFAB+//13vvzyS6ZPn06vXr146623uPfeezn11FMZPXo0p5xySpn5DRkyhJdeeon69evz5ZdfArBo0SL233//Hfu0bNmSRWZZDSM6zM6UmZ/ZmfzgrbegUiU46aSSbb17w3//C19/DYcfnr655QPR9sAyhym5WITJMOLAT5WZOXMmH3/8Mf369cM5x/jx4+nbty+VK1emWbNmHHrooUycOLHc840fP55zzz0XgCOOOIKVK1eydu1aAHr37k3VqlXp0qULRUVFHOfJ43Tp0iVsw8phw4axYMECCgsLd1wsOefK7OevChuGkXmYnTEygbffhkMPhSZNSrYdcYQq5VlaXvKJtgeWOUzJxSJMRvYTxUptWJo0qdjxQK9evVixYgXLly8PebEQDZEuMqpXrw5ApUqVqFq16o7tlSpVYns51Z1nn302J5xwArfddhstW7ZkwYIFO15buHAhzf324IZhRMbsTFjMzuQuM2bo7ZJLSm+vWxcOPhg+/BDuvTc9c8sXrruu7N8/VA+sJk3UiQ3QXzESiEWYDKOCzJw5k6KiIho3bswhhxzCyJEjKSoqYvny5Xz11Vf07NmTunXrsn79+h3HBD8/5JBDGO5VcI4dO5YmTZqUqhGIhVmzZu14PGrUKDp06ADASSedxIgRI9iyZQtz5sxh1qxZ9OzZM64xDMNILWZnjHTw9tt6HyIjk969Ydo0CPCPjSQwZ47eN2+u9WNt2oTugVWpEuy8s0WYkoVFmIzcplmz0IXXzZpV6LR+bQHoqu2LL75I5cqVOfXUU/n222/p1q0bIsK9995LQUEBjRs3pkqVKnTr1o0BAwbQv39/7r77brp3786NN97I0KFDGThwIF27dqVWrVq8+OKLcc/thhtu4Ndff6VSpUq0adOGp556CoDOnTtz1lln0alTJ6pUqcLjjz9O5cqVK/R3MAwDszNmZ3KWt9/Wvj9+ulcgvXvDtddqWt6FF6Z+bvnAypXw5JPqHL3ySvn7Wy+m5CHxhvbTRY8ePdykSZPSPQ0jjcyYMYOOHTumexo5S6i/r4hMds71SNOU0oLZmvzG7ExyMTtTQqbamrlzoV07uO8+uOaasq87p9GOffaBd95J+fTygltugTvu0Ehep07l73/mmfDzzzBzZvLnls3EY2ssJc8wDMMwDMMohe8EnXpq6NdNXjy5rF0Ljz4Kp50WnbMEFmFKJjE5TCJSSUTiS3g2DMOIErM1hmGkArM14XnrLejWDXbdNfw+xx8PGzaovLiRWJ54AtasKdtvKRItWuj/Y926pE0rbynXYRKRV0WknojUBqYDv4rItcmfmmEY+YTZGsMwUoHZmvJZsgS++aakWW04TF48PMOHQ9u2KsbQtq0+j5aNG+HBBzWCt/fe0R/n15qZUl7iiSbC1Mk5tw44BfgQaA2cm8xJGUZ5ZFvtXbaQ5r+r2RojozA7kxwy4O9qtiYCw4fDnntqjdKTT0a+0Pflxc1hKs3w4SqEMW+e/h3nzdPn0TpNzzyj/a7/9a/YxvUV/C0tL/FE4zBVFZGqqGF5zzm3DUi7tTPylxo1arBy5cpM+NHNKZxzrFy5kho1aqRrCmZrjIzB7ExyyAA7A2ZrwuJf6K9apc+XLCn/Qr93b/jlF5MXD2TIENi0qfS2TZvKT68bPlyFNK68EqpXL5EUjxZrXps8opEV/y8wF5gKfCUibQDLjjTSRsuWLVm4cCHLly9P91Ryjho1atCyZct0DW+2xsgYzM4kjzTbGTBbE5ZIF/rBfX98ior0vnVrvdgfNiz8vvnC/PmxbYcSZ9X/+2/ZUiLXHu3f0xym5BGXrLiIVHHORW79nSQyVX7TMHKZdMn9mq0xjPwhnbLiZmuUSpU0hSwYESguLrs9+CIfoFat0I1VK8rw4eq4zZ+vzlkmO2Zt22oaXjBt2qhce6KOCUXDhvp3eeyx6I/JN+KxNWEjTCJyjnPuFRG5KswuD8Y0O8MwjBCYrTEMIxWYrSmf1q1DX7S3bh16/3giUvEQ7Jj5NUGQmU7TsGEwaFBpufVatXR7OOKJSoXCpMWTQ6Qaptrefd0wt3IRkeNE5FcRmS0iN4R4/TARWSsiU7zbLTHO3zCM7MdsjWEYqaBCtiYf7MywYVAlaCk90oV+oi7yyyPemqB0UVgIRx1V8rxp0/KjbuGc0nDbw9GihankJYOwESbn3H+9+9viObGIVAYeB44GFgITRWSUc2560K7jnHMnxjOGYRjZj9kawzBSQUVsTb7YmcJCuOUWjVBs3Vp+6lusEal4SbRjlor0vs2boUMHmDkTrrii/PMPGwYDBsD2gMTQ8qJSoWjeHKZNi3W2RnlE04fpXq9fQVUR+VxEVojIOVGcuycw2zn3h3NuKzACOLmiEzYMIzcxW2MYRiqI09bkhZ3Zvl2jExdfrDVLc+dGvtAfNkwv6gOpWTP2i/zy8OWyg4nHMauo5Hc0OAc//ACHHAKtWsGMGeUfU1gInTppXysRrV2KpxasRQtYurREjMNIDNHIih/j9Ss4EV1V2R2IpsFbCyBQZHKhty2YXiIyVUQ+EpHOUZw3IhVpFGYYRlrJKltjGEbWEo+tyQs7M2uWRka6d49u/8JCvahv00Yv8gHOOy/x0ZqCgtDby2usG4pUpPfNmQNr1mjT2Y4do3OYQOXc//736JzVcLRooc7SsmWxH2uEJ6o+TN798cBrzrlVUZ5bQmwL1l75AWjjnOsGPAq8G/JEIheKyCQRmRRJ4jUVqwaGYSSNrLE1hmFkNfHYmoTZGchcWzN1qt5H6zCBXtTPnQvbtmkkKNH1S6NGweTJ6kj4jlnLltCuHTzyCFx6aWwL5amou/rhB73fZx91mGbODK0yGMjatbBwoTYNrggmLZ4conGY3heRmUAP4HMRaQpsjuK4hUCrgOctgVJlaM65dc65Dd7jD9Fmck2CT+Sce9o518M516Np06ZhB8y2okDDMEqRNbbGMIysJh5bkzA7472ekbZmyhRNCevQIfZjK1dWp+ajj2D16sTMZ+NGuOwy6NwZXn5ZHbPiYm2SO2UK7LorPP54bAvliRJXiMTkySqeseee6jBt3Fh+Y1+/7qhzBeOSvsNkwg+JpVyHyTl3A9AL6OF1w95EdHm7E4HdRKSdiFQD+gCjAncQkQIRDeKKSE9vPitjewslpEqtxTCMxJNNtsYwjOwlTluTF3ZmyhS9YK9WLb7jzz5bI01vvZWY+dx+u17DPfWUOnKB1KtXdpEcyl8oHzas7LlE4MorKz5fnx9+UGepRg11mKD8tLxfftF7izBlJtGIPkwC+gL1AJxzG51zS8s7zmsAdykwBpgBvO6cmyYig0VksLfbGcAvIjIVeATo4+LppOuRilUDwzCSQzbZGsMwspd4bE2+2JmpU6Fbt/iP32cfaN8eXnut4nP5+Wd48EGtiTrooND7LFwYenukhfLCQujVS1P4RGDnndWxeewxFUuoKL7gw9576/NYHKY6dSp+zdq0qUb7zGFKLNGk5PVBCxsnisgIETnWX0EpD+fch8653Z1zuzrnhnnbnnLOPeU9fsw519k51805t79z7pu43wmpU2sxDCMpZI2tMQwjq4nL1uS6nVm6VG+x1C8FI6JRpi+/jC8lLFC4a9991ZG5557w+8e7UF5cDAceqPeLF8Pnn8OSJTpmq1YVEw5bsABWrFDnEdSBady4fIdp2jSN7lWK5so8ApUrqxNoDlNiiSYlb7ZzbgiqIvMq8BwwX0RuE5FGyZ5gLIRSa+nXLzO7QBuGUZpssjWGYWQvZmtCE4/gQyj69tUoy+uvx3ZcsHDXli3aC+rjj8MfE2qhPJreRb/9BrvvXvK8Vy+tlVq4UG8VEQ7zBR/8CBOoXHg0EaaK1i/5tGhhDlOiicqPFZGuwAPAfcBbaNh5HfBF8qYWH75aS1GRhoVnzkz3jAzDiJZssjWGYWQvZmvK4jtMFUnJAxWM2Guv2NPyQgl3bd0auR7JXyhv1kyf77RT+b2L1q2DP/+E3XYrvT3UfOMRDps8WaNEXbuWbCtPWvzPP/VW0folH3OYEk80NUyTgf+gBY9dnXP/dM5975x7APgj2ROMFxEYOBD+9z/4/fd0z8YwjPLIVltjGEZ2YbYmNFOmaCpbw4YVP1ffvjBhAsyeHf0x8Qp3FRaWCCbceGP5WUWzZul9sMOUKOGwH37QiFJg5KtjR1i5EsIpyE+bBkso4MqrRC9gA2/hmlBFoEULU8lLNNFEmM50zh3pnHvVObcl8AXn3GlJmldC6NdPvfwXXkj3TAzDiIKstTWGYWQVZmtCMGVKxdPxfPr00fsRI6I/piLCXU2aaJ1QNFlF4RymRAiHOacRpsB0PChf+GHaNCggTKfZODrQtmihfZ02boz5UCMMVcK9ICJXBTwu87pz7sEkzSlhtGwJxx6rDtPQoVoIZxhGZpELtsYwjMzHbE14/voLfv0VzjgjMedr1QoOPhhefVVT2qKR7xk2TGuGAtPyoqlH8unQofw6IdD6JdCyjfLGj1U4bMkS9W98wQefQIfpkEPKHudHyBJF8+Z6v2hR6VotI34iRZjqlnPLCgYO1AK+zz5L90wMwwhDTtgawzAyHrM1YfjlF1WMS1SECVQtb8YM+Omn6PYvLIT77y953qZN+fVIgXToEH2EqVUrdYaCxw8WDjvppNiEw0IJPoCOV7s2TJ8e+rhEO0zWiynxhI0wOeduS+VEksVJJ0GjRvDccxptMgwjs8gVW2MYRmZjtiY8U6bofSIdpjPOgIsv1ojK+vWa2jZsWGQHxE9/+9//QkdiItGhAzz7LKxapdd94Zg1q2w6nk9hYcn8jj4axo1T4YloG/lOnqzOVvDfUSR8BMw5c5iygWhEH1qKyDsi8qeILBORt0SkZSomlwiqV4dzzoF339UvkWEYmUm22xrDMLIDszVlmToV6tbV3kOJYswYdRTWrYtepnviRK09D47QREOHDnr/66+R94vkMAVy1VUqnPDGG9HP4YcfYI89tAFtMOGU8hYv1nqjRJJuhymwn1a8/awyjWhEH54HRgHN0UZv73vbsoZBg3SF4NVX0z0TwzAikPW2xjCMrMBsTRBTpqiceEWbpgYyZIim+QVSnkz3xImqMBfK4SgP32GKlJa3cqUunkdT13PsserkPPCAOnzREErwwadjRy0RWb++9HY/urS1YbPQBzYLsz0CdepAvXrpUcoL7qcVbz+rTCOar0ZT59zzzrnt3u0FoGmS55VQunXTD/Bzz6V7JoZhRCDrbY1hGFmB2ZoAios1wpTIdDyIXabbOZUi33ff+MZr21ZT5yI5TOEU8kJRqRJceSX8+KOmCJbHsmUa0QkWfPDxhR+C5+c7TOtnLdVw3BtvwCef6B/EOVi6tPzBQ5CuXkyh+mnF088q04jGYVohIueISGXvdg6wMtkTSzQDB+qH/scf0z0TwzDCkBO2xjCMjMdsTQBz5sCGDRVvWBtMrDLd8+bBihXxO0xVqqgjlCiHCbSko0kTeDAK/UT/+jJShAnKpuX98ou2WmrcGM2LHDUKzj8/uglGoHnz9DhMiepnlWlE4zANAs4Clnq3M7xtWcXZZ+vKw/N5HXQ3jIwmJ2yNYRgZj9maAJIh+AAq8BDYvBUiy4RPmKD3PXvGP2bHjuU7TJUqwS67RHe+mjVVuOL990vkyMMxebLe77VX6Nd33VWdulAO0557ek8+/xw++ED1yYPzGWMkXRGmRPSzykTKdZicc/Odcyc555p6t1Occ/NSMblE0qgRnHqq5lBu2VL+/oZhpJZcsTWGYWQ2ZmtKM2WK9qns3Dmx5/VlugsK9HmTJpFlwidO1IXtLl3iH7NDB/j9d61bD8WsWSWpe9Fy8cW6/0MPRd7vhx+0t1P9+qFfr1pVI1uBDlNxsUqN73CYRoyA1ath2zYtuKoALVokxO+KmVCOcpUqsfWzykSiUcnbRUTeF5HlnqLMeyISpW+eWQwapMV+o0aleyaGYQSTS7bGMIzMxWxNaaZOVWW34L5EiaCwUIUOGjaEv/0tsqT4xIka5YrFmQmmQwcoKoLZs0O//ttv0afj+TRrBr16wVNPRVZ9mzw5fP2ST6dOpR2muXO1vmeHs7p6dcmLFVRsWLwYtm9XZyWVSnW+o1zFa1xUp47+Tw48MDXjJ4toUvJeBV4HdkYVZd4AXkvmpJLFkUdq8zATfzCMjCRnbI1hGBmN2ZoApkxJfDpeIJUrwxFHwKefhlebKyqCSZMqlo4HkZXynIteUjyQ4cPh++9LNBhCqb6tXKnby5ND79hRnTk/08kXfNgRYVq9ukSqsAL5dMOHa7AK0qNUV1ioTvLgwfq/qFYN7rgjNWMni2gcJnHOvRygJvMKEKXAYmZRuTL076+9ARYsSPdsDMMIImdsjWEYGY3ZGo9Vq/R6KNGCD8EcfbRGmsL1SJo5EzZujF/wwWePPUrOF8yff6qkd6wO05AhsHlz6W3Bqm/lCT74dOyoKXK++ITvMHXq5O2wejUcdJBeqO63X2wTDZpzcPlJKpXqiovViWzSRFMDBw+GF18MH/nLBsI6TCLSSEQaAV+KyA0i0lZE2ojIdcDo1E0xsQwYoN72Sy+leyaGYUDu2hrDMDILszVlmTpV75MZYQJ1mECjTKFIhOADaPpXy5ahHaZYFfJ8olF98wUfonGYoCQtb9o0aNNGeyYB6jC1bg3HHOPJ5sVHupXqVq9Wp6lJE31+ww3ZH2WqEuG1yeiKi3jPLwp4zQFZ+bZ33RUOO0zV8m66SbtQG4aRVnLS1hiGkXGYrQnCV8hLdoRpl1309umncNllZV+fOFGdhmgaypZHhw6hHSZf5S7WMVq31pS2YCpV0pr49evh9tt12957q7hBuFqtPfbQ607fYfrllyCxjcmT1dP46CMtKjvssNgmW86cU6VUt2KF3vsOU0EBXHKJyrPfeGNJ6mQ2ETbC5Jxr55zbxbsPvmV1ceSgQaqiMm5cumdiGEYu2xrDMDIHszVlmTJFL2abNUv+WEcfDWPHqgBcMBMnqmBCpWgKRcrBd5iC66VmzVIhgjZtYjtfKNW36tVh553h5JO11MNv1FperVCtWjr+jBn6d5g5M6B+CVTSuUkT9Sqiaf4Uw5wjSbonGt9hahrQDvq669QH9J3LbCMalbzKInKSiPxTRK7yb6mYXLI4/XTtDWbiD4aROeSirTEMI/MwW1NCsgUfAjn6aI3G+Ol3Plu2aGpgRdPxfDp00HGWLCm9fdYsjXJViZRbFQJf9a1NG40OtWkDzz4Lf/wBDRqoYEUg5dUKdeyoDtPs2Sp/vsNh2rBBU58mTdKusxVQyfPn7EeUatSILOmeaJYv13s/wgTqPF12Gbz2mr69SIqDmUg0vvz7wACgMVA34Ja11KoFffrAG2/AunXpno1hGB45Z2sMw8hI8t7WDB+uF/4//QTffJOai9YjjtCL5OA6pqlTNdoy9KkC9UiCb34jpyjx64SC0/LiUcjzKSxUCfDiYr0vLNS+SmvXht4/Uq1Qx44qfvHTT/p8h8O0bBncdZfm6VXQYfLnPG8eDB2qTulBB1XodDERnJLn07at3i9Zkh71vooQjZ/d0jnXNekzSTGDBsEzz8Drr8P556d7NoZhkKO2xjCMjCOvbc3w4XqR6qeRrVunzyG5EYiGDaFHD3WYhg4t2e5HnGqsXRb6wGVhtofBr4+ZMUOdNChRpjvyyNjmXB7x1Ap17Kiqe6NHqwO5o55nzRq9b9hQHaZly0oaKVWA/v317/3SS3DzzRU6VdSEc5juuqvsvn5ELlXRr3iJJsL0kYgck/SZpJj99tMP7fPPp3smhmF45KStMQwj48hrWzNkSImz5JMqyemjj9aeRoGRmYkTE1tDtfPOWnYRGGFavBj++iv+CFM44qkV8iNg772nQmQ7Ggb7TWt9h6m4WLXQK0jbtuo4vvCCnjIVLF+uf4fgv0261fsqQjQO03fAOyLyl4isE5H1IpL1iWwiGmX65pvQaiqGYaScnLQ1hmFkHHlta9J50Xr00VrzM3ZsybaJEyvefykQkbJKefFKipdHqPqm8mqFfIdp3bogwYdAh+n002H69NKqCRVgwACtuUqV2NmKFWWjSxA+8pYq9b6KEI3D9ADQC6jlnKvnnKvrnKtX3kHZwDnnaDNbizIZRkaQs7bGMIyMIq9tTTovWnv1gtq1S+qY1q1TxyZRgg8+qXKYIHR9UyQ++qhEDfCLLwLqdwJT8po2Vc+qatWEzNEXO3vhhYScrlxWrAjt66Vbva8iROMwzQJ+cS5YoDH7KSiAE07Q7sOhZC4Nw0gpOWtrDMPIKPLa1gwbVrYsJlUXrdWqwaGHljhMkydr8X8iI0ygDtPChaqWB+owVa8OrVoldpxY8evH/NS4tWsDRA/OP1+V8po3V5WGRx6B774Lf7KC6EUyatWCv/9dxc42bEjOewtk+fLQESY/Iud//qKJyGUK0ThMS4CxInJjLspvDhqkdXUff5zumRhG3pPTtsYwKsLw4VqLkG1SvBlKXtuaPn2gTh2tnYk2jSyRHH20NpGdP79E8KFHD8IXMsWRluYLKfjNan/7Ddq3T0yfp4oQsX5MRMNvlSqpR3HllaoMEY5wYhhhtg8cCBs3qtOUbMKl5IF+zvbbDw4/PLqIXKYQzUdnDvA5UI0clN88/njYaSdLyzOMDCCnbY1hxIu/Kj1vXvZJ8WYoeW1rPv1Us79eein6NLJEctRRJfOYOFF7IzVpAixdCitXwvvv6wd9+nStmzjjjJjH8B0mPy2vIpLiiSRi/diLL8Jtt+mGypU1UlRBafFAevWC3XdPzfVuuJQ8n4IC/XdnE+VqFTrnbgMQkbr61KUgmJc6qlaFfv3goYdUjGSnndI9I8PIT3Ld1hhGvERalc6W1dlMIt9tzQsvQKNG8Le/pWf8zp1Vye6zz9Rh6tUr4MVGjeDEE/Vxx44weDA8+SRccokeGCW77qo+x8yZKjLx++8lp00nEWXIR4/W5ky33qobE9CLKRARFX+46SZtmtu+fcJOXYotWzQVMlyECdRh+uKL5IyfLMqNMInIniLyI/ALME1EJotIVJ9aETlORH4VkdkickOE/fYVkSIRiX0ZIQEMHKhS96+8ko7RDcOA/LA1hhEP2SzFm4nEa2tywc6sXg3vvquOdvXq6ZmDiEaZPvhAP8M7BB/eeAMeflijSz5Dh6pawdVXxzRG9eoauZoxAxYsgK1bNbqSbiKKHqxerYIPPgl2mEADBJUqaTArWYTrwRRIQYG+3S1bkjePRBNNSt7TwFXOuTbOuTbA1cAz5R0kIpWBx4HeQCegr4h0CrPfPcCYWCaeSDp10nzKZ58t/T01DCOl5LytMYx42Hnn0NuzQYo3Q4nZ1uSKnRkxQi9SBwxI7zxq1y4RH7j3Xi+99D//0St5kZIdmzSBW26BMWNUXi4GOnbUCJNfx5QJKXkRZchT4DC1aKGBurvuSl495E7dCnAIFw0OL0bhP4yxJ3FaicZhqu2c+9J/4pwbC9SO4riewGzn3B/Oua3ACODkEPtdBrwFVLw7VwUYNEjTZSdOTOcsDCOvyQtbYxixsHVr6EhAtkjxZijx2JqcsDPPPw9du8Jee6VvDsOHl45wLFsGt5y/GL79VvWvg7n0UlWoOP74qBThfDp00Nolv44pExwmiCBDHuwwDRumuYThCCeSEaEL8PDh8OuvmqaYrHrIqivLF6Pw/23ZVMcUjcP0h4jcLCJtvdu/0ILJ8mgBLAh4vtDbtgMRaQGcCjwV7YSTxd//rt9HE38wjLSRF7bGMGLh1lthzhz45z9ja45pRCQeW5P1dmbaNF0UHjiwdBAn1QwZAn/9VXrbcZvf0QennVb2gGrVyh7gEyFE0aGDLjh88olGtMJFajOGoiKt4fJp1AjqRWgPtnQpbN6sb9K5klsEL2TIEN09kB0qfSnE/1/kmsM0CGgKvO3dmgADozgu1NcxOOHtIeB651xRxBOJXCgik0Rk0vLly6MYOnbq11chlldfLVtcaxhGSsgLW2MY0fLll3DPPdqe5eGHY2uOaUQkHluTMDsD6bE1L7ygatXp/uyEqr07jbeZTkfNo0sQvlLe559rdCmdTmJUzJ2rvZcCn193XUlOYSjeew9q1IC33orK+8iUeshsjDBFVMnzcnHfcM4dFce5FwKBLcJaAsHJmD2AEaKf4ibA8SKy3Tn3buBOzrmn0ZxjevTokbQqo4ED4eWX4Z130m9QDCOfyDdbYxjlsWoVnHuuXug99FC6Z5M7VMDWJMzOQOptzbZten1z4olxtTVKKMFKcZVQ//LT+mdQpiisAuyxh95v3pw56XjlEujVrV0L992nRfbhFCtmzNBVlDPO0BS+m26KePqIKn0pxFekziaHKWKEyVsl2SQi9eM490RgNxFpJyLVgD7AqKDzt3POtXXOtQXeBC4OZVhSxaGHQrt28Nxz6ZqBYeQn+WZrDCMSzsEFF2iri1df1XQiIzFUwNZktZ0ZM0az1wZGE7NPMsFKccVU5qRan9PksdsSOk6jRiUX5hnvMC1Zoh2Fv/22ZFvz5nq/aFH446ZPVznAWrV0laUcIqr0pZCqVVXPY8mS1I5bEcrtwwRsBn4WkU+Bjf5G59w/Ix3knNsuIpeiSjGVgeecc9NEZLD3esbl+FaqpMbklls0Etq2bbpnZBh5Rd7YGsOIxLPPwttvq3rYPvukezY5Scy2JlvtzPDhWp8yb55e46xZk8LBCwpC1hgVNmsGTy9lyBBNBdu95SZuvqsWhYVx5syFyrVr1ozhDyxl7Vp9+t//qiJyxmYPLVkCI0eq0+TTpIl6FpGU8mbM0DTGrVu16W85+O//sstUY6JlS7j77sT+XdZUb0aDLSFqy4LEKLKteW00DtNo7xYzzrkPgQ+DtoU0Ks65AfGMkWj699ci2xdeUPl/wzBSRl7ZGsMIxa+/wuWXw5FHxtx6xoieuGxNttmZ4cNVAc2vyy4uhn/8Qxu6psRxCCfIsGwZhYXeHNauVa3r9fcDg8Ofq1mz2DSoly3jwgtL+vysXKl/C8hQp2n1ar0PVMkTiSwtvn271jcddxwsXBiVwwQlPbjOPBPefx+6d6/Y1IM5/cClbNkC4xe2VU/9hhtUxzyInHOYnHNJbG+VebRuDUcfrWp5t9yiKzKGYSSffLM1hhHM1q1w9tlaw/3ii/b7kyzyxdYMGVJWxMpXRMsYp2H0aNi4UbXOIxHuyjqCkkPGv/dA/NBfoMME6jD5zlQw27bB7bdDr14weXLUDhOojwqa7Zdoh2n5cs0S5Jc1uqFT6Mq0ggIYPz6xYyeTch0mETkQGAq08fYXwDnndknu1NLHwIHQty988YV2ozYMI/nko60xjED+9S/44QcVHvIvaIzEky+2JlMU0SLy9tuqMb3//ikZLuHvPUzaIc2axRY+8Z2iBg1Kbx87VmXVQ1GzpqrogUZxXPTaIYEOU6JZsQL277Fdo4dDh6p6TQj8CJNzWaBgSHQpec8CVwKTgXKlMnOBU07Rz+xzz5nDZBgpJO9sjWH4fP65CmJddJH+BhlJJS9sTaYoooUk+Aq5cuXYnYw4SPh7j5B2GDM77VQ2whTOWQL951apot7P0UfHNNTOO+u/INEOk3PqMDVpKipgUVCgkbCqVcvsW1CgCobr1mlrn0wnmoD/WufcR865P51zK/1b0meWRmrU0JDt22+Hj4QahpFw8s7WGAZoJk2/fto35sEH0z2bvCAvbE2mKKJFTTxORgTCvveCAvUWgm9+c6B0cP75+v7r1i29/csvNU9348ayx9x6K/TsqY8XLYLPPtNCtSioWlX900Q7TOvWqX/UeKfKGjV84QVtvhsi+pVtvZjCOkwisreI7A18KSL3iUgvf5u3PacZNEiLBUeMSPdMDCO3yXdbY+Q3zum10vLlKiEefJFnJI58szWFhfD00yXBnDZt9HnKaniCVNFSOkazZjz9tL5nkaD3nsioULJZuBBeey208MP06SWNfkeO1CjTunVRn7pFi8Q7TCtW6H3ryotUDGD7dg0jhWjOnG0OU6SUvAeCnvcIeOyAIxI/ncxhr720BvG551RVxjCMpJHXtsbIb55+Gt59F+6/X393jKSSd7bmlFPUKb/7brj++hQPvnQp/P3vWpg3a1bJ9kQWrARebTsHv/wCXboAUEiaBR7CyJ2H9BBuv10brz32WOntfi+mxYtLN5NyDmbOVGlngMaN9X7VqrJ1UGFo0QLmzIlq16jxHaZ2a36EKwfBjTfqhoULS5pieeSMw+ScOxxARHZxzv0R+JqI5FRhZChENMp0xRXw00/lC7gYhhEf+W5rjPxlxgy48kpdGL7yynTPJvfJR1vjL+w3bZqmCcyZA+3apWYskR3OUsYSLor19dfsaBoVSKDDFMiiRbB+fYkCXaNGer9ypSdRVz4tWiRepc7/vDXEa6LbrZveL1gAe5cO4mabwxRNDdObIba9keiJZCKFhZrn+fzz6Z6JYeQFeWtrjPxjyxYtTahd2yTE00De2Bp/xT9tDtMff6TOYQKNvFx4Idx0U2rGS1Ta4erVZQUfILzDNH263vspeX6EKUZp8VWr4K+/YpxrBPzPW4Pt3jwCHaYgGjXSa+xscZjCRphEpAPQGagvIqcFvFQPqJHsiWUCTZrAySfDK6/APfdEFisxDCM+zNYY+ciQITBlCrz3nipWGcknH21NWiNMW7dqBCQ41zRcE9pEOB8iGql56y1tplkj6N8apShC1MyfDx98oFGdwIZGsaYdrl4N7duX3V6vnno227eX3t6tm16c+mP6EaZVq6IeMlBaPNTQ8eA7THW2rtJVoN12007cIdK0fJ2NrHeYgD2AE4EGwN8Ctq8HLkjinDKKQYPgzTf1+3DaaeXvbxhGzJitMfKKTz6BBx7Q+tiTTkr3bPKKvLM1vsPUpEkaBq9WDb76quz2ZF8hX3ABvP66Sh2ffXbp1156Kfxx8Ths1aol5uIwXIRJROt/gmnWrHSBVuvWMGoU7LNP1EMmy2GqVg2qbVil76dyZXjoobD754TD5Jx7D3hPRHo5575N4ZwyimOO0Yjoc8+Zw2QYycBsjZFPLF+uddqdOqnQg5E68tHWpL2GKR0ccYSmAT7zTGmHac0aVb444AAYNw4uvlgjUSEU3KJm5Ej9Mlekdso5aNs26tojAD78UKX/OnfW57Vqwd/+FvmYIJLRvHb5cnXO5bahcOklunHLFo18hQilFxSEzNbLSMrNms4XoxKOypX1x+2jj0KrOhqGkRjy3dYYuY9zcN55eu3w2msmIZ4u8snWrFihdSL16qVh8Keegj33hA0bUjtupUqq1T92bGl1vlq14Jpr4NFHdZ+WLfUPtHlzfONs3QoDB8L//V/Z1yLInZdBBCZNgquvDn3MI49Anz6lt/XvXzZy8+mnMGFCudP2SYbDtGKF55w3bVoiSDFoEBx4YMj9CwpgyZLEjZ9MrMw0CgYO1LTXSJFcwzAMw4jEk0/C++9rTawprxqpYPlyvXZNpJJ31EyfrjU+tWunfuyBA+Gqq0qvSlSrBtdeW6LW1qqVhkPijTBNnKiKCYcdVva1pUt1heTHH+HEE1US07n48s/mzdN0O7/564oVevMFH3wGD4aHH476tPXqQZ06iXeYmjQBnn1Wo2Cgf+dFi0LWjxUU6J+/qChxc0gW5jBFwW67wcEHq1peiGbFhmEYhhGRadN0AfnYY+Gf/0z3bIx8wU+RSgu+pHg6vLWdd9ZCwRYt9MLt7LPhnXdK79Ovn/6BWrWKb4yxY/X+kEPC77NtmxbB//Zb+H1mzID99lNp8VC0aKGOmS87PmOG3vsRHJ/GjWNSyRNJfPPaHZ+3O++EESN0Y6tWGo0L07y2uLhiWZGpIpLoAwAiclWIzWuByc65KQmfUYYyaJAuWHzzTdjIomEYFcBsjZGrbN6s12t168ILL5iEeLrJJ1vjR5jSwpw5iVMTiJWCgrJKfK+9VrpxbEUdubFjNVTsS3qHwnfGIhXqLF2qqXRbt4Z+PVBavEGDEocpOMIUo8MEiXeYdqTkrVxZotzXsqXeL1hQJiUxsBeT/zhTicZs9wAGAy2824XAYcAzInJd8qaWWZxxhkaVn3su3TMxjJzFbI2Rk9x4ozZAf/75zL8oyBPyxtbsuIBNNc6ltmltMOEaxAZuLyqCM8+Mr96iqEjrjkKl4wWy006aCjh/fvh9Vq/W+1AqeVC2F9P06ZpqGBwZa9QorQ7T9u36VnZquE2b6vqOpD/PEGp/2dS8NhqHqTGwt3Puaufc1aihaQocAgxI4twyijp14O9/V0GUVNcvGkaeYLbGyDk+/lhrsy+9FE44Id2zMTzyxtakLcK0eTOcckpmp+RUrgxffAHffRffsYsWwb/+FXk/X1yiIg5Tq1aqwufXhNx8M/zvf2VD1Y0bx9SHCdRhWrw4Me2pfF+tRS3v/fgRpl13hfvuK5tCSO45TK2BwDjhNqCNc+4vYEtSZpWhDBoEGzdqXybDMBKO2Rojp/jzTxgwQIXC7r033bMxAsgLW7Ntmyppp6WGqWZNGD5c03MymZYtQ/c5ioZataLzRnv0iCxTWJ7D1K6dhqiPPlqfN26s5wzm8svh88/Ln08Afk/cP/+M6bCQ+E1rd67meU6+w1S/vqoT7r57mWP8DL1scJjKrWECXgW+E5H3vOd/A14TkdrA9KTNLAM54AD9fz/3nP4IGoaRUMzWGDmDc1r3umYNfPaZXj8aGUNe2Br/AjYtEabt2zUKkxZ5vhho1Sq+RkBXX631Wf/4R/n7jhwZ+fWmTaFXLy1yLI8NG+A//1FHNLiGadddyz8+iEBp8YqmC/uft+pddtfUx0B1xPnzYdMm6NCh1DG1a+vbzgaHKZo+THeg+b1r0KLIwc65251zG51zhREPTjUFBfrlDL4lKGlcRKNM48ZFFjwxDCN2ssrWGEY5PP64qured59GmIzMIV9sTVodpnvv1QhDvD2OUkWrVrFHmLZt0x5TvvhCRenfXxXFIjmX554Ll1yiY95yC8ycWXafBQvg6adL/vFRkMheTL7SXZNmlbV2K9Bh6tdPe2OFoKAgRxwmjx+BN4C3gT9FpHXyplQBoinyqyDnnqtpoy+8kLBTGoZRQnbYGsOIwM8/awbK8cdr7ZKRkeS8rdlxAZuOlLw//lCxgxo10jA40TeO7dhRnabt26M/96RJGi0pT/DBZ8wY6N49/tQ/UI/ihx/CS4qDikFcdFFMK/qJdJh8P635/O+0zmrdupIXIzimO++cIw6TiFwGLAM+BT4ARnv3eUnz5tC7N7z4YnY02jKMbMFsjZEL/PWXSog3aKCqeJmekZSP5Iut8R2mtESY5syBXXZJw8AefuPY4Fvwlfk//6mOSJVoKlQ8oum/FIhzMHWqNqANRf/+UFhOYLN5c1VnmDEDqlYNnX7n1wzFoJRXUFCiX1FRfIepwfRvtA9TYOPSli11kBAXztkSYYrmE3I5sIdzLjatwhxm0CA4/XT45BN1ngzDSAhma4ys5/rr4Zdf4KOPNCvFyEjywtak3WHaf/80DJwCxo5V1bpoQ3fl9WKaOVNXWCLRvDksWaIdsHfbLbSD58t4x+AwVa6sDkuiUvLq1YMqa1fqiQOFLvwo3rJlJTLpHgUFGoTLdKJJyVuA5vgaHieeqN8T68lkGAnFbI2R1YweDY8+qmJVxx2X7tkYEcgLW7NihUY4/cBDyti+XYv809WDKRaWLlXH7u23oz+mfn29EIwW32EKJy2+enV4hTyf5s21dmrChLJiDz6+wxSHtHiiIkxNmnjjN2pUOrxeTi+mtWs1Op/JRBNh+gMYKyKjCZDbdM49mLRZZTjVqsE552hR744PiGEYFcVsjZG1LF2qqnhdu8Ldd6d7NkY55IWtWb5cr8NjyTZLCFu2wLXXwpFHpnjgOKhXD77/PrSIQjhefz32MRo0qJjD1KmTpjQ9+aQ6bOHGqVw5rua1v/4a0yEh2dEkeeXKsl76vvvCa6+FTNP0ddmWLYO2bSs+j2QRzddovner5t0yl2bNQgs8hCv+qwCDBmkzwuHDdTXRMIwKkz22xjACKC5WZ2n9evjyy/TVuRtRkxe2JqFNawsKwl9fBReg1K4Nd92VoIGTTK1aenEfrSDDtm1aQxQrJ54IbdqU3e5cdA7TkUeW74CKqOJMjMrQLVpo/96Ksny5l223Zk1JtMunoAD69Al5nD/dJUuy3GFyzt2WiokkhOAv7b//DUOGwPvvJ3yoLl20b9hzz2nNoBX2GkbFyCpbYxgBPPoofPyxZh107pzu2RjlkS+2Ji6HKZxjFI5Q+65Zo5GOaPoKZQLl9WKKxVkMx8svh96+bRucdBJ065aY8cOl60WgRQtNidu4sbQSeKysWKERdp4fE1pO/uuvtSHd3nuX2uw7TJku/BDWYRKRh5xzV4jI+4ALft05d1JSZ5YILrtMrUWkD2IFGDQILr4YfvyxzP/fMIwoyQlbY+QtP/0E110Hf/tbdD0sjfSRb7ZmxQrVB4iJRLRhuf9+zUvdvDkN+YBxUF4vpmS2rKlWrfz6qVjGf/NN9Xz69496CoHS4rvvHvVhZdiRkicSulP3wIGw115lGvlmvcME+O7w/amYSFKoWxcuuCBpp+/bF666SqNM5jAZRtxkv60x8pK//tLfgUaN4NlnLdMgC8grW7N8OfTqlYaB58xRJyQbnCWAAw/UHkbJ5NlndWVl/vyKhXHK46WXdIw4HKaFC+N3mDZtUnvYpAkaSejdW1eRAgnjmDZtqrYz0x2msCp5zrnJ3sNGwHfOuf8F3qI5uYgcJyK/ishsEbkhxOsni8hPIjJFRCaJyEHxvY1yePHFsB2GK0KDBnDqqVrHlOnNrA0jU8kpW2PkFddco9dZL76YJulmIyYqamuyyc4UFwes+KeaP/7IDoU8nxtuUEcjmdSooepxwal/48bpP+mbbxIzTuPGcYk+QMWU8nwJ+50abFVhiqlTy+7UsmXI1McqVfRPkLUOUwAnAb+JyMsicoKIRLVkICKVgceB3kAnoK+IBLcm/hzo5pzrDgwC/i/qmcfCkiXq3X//fcJPPWiQpuu++27CT20Y+Ub22xojb3j/fXjiCc0yOOaYdM/GiJGYbU222Zk1a7RHaF42rc1EWrfW+2ClvBUr9JYopZg0OUx+09rmNVaVzCOYVq20+W6WNq8t12Fyzg0E2gNvAGcDv4tINEagJzDbOfeHc24rMAI4OejcG5zb0Qq4NiFyihPCpZfqP++2xNd5HnGEpmMMHAiVKqnCx/DhCR/GMHKenLA1Rl6wZIkulnXvrtpCRnYRp63JKjvjX8Am3WEKViHetElra7IpwjRpknoN/4sqoSE+wjlMq1frfXkqedHSuLHmxsXQ1KhOHVUqT4TDtFNlz1kL1fyrVSt1lkJ4RjnhMAE457YBH6EGYjJBRiIMLdDmcD4LvW2lEJFTRWQmMBpdkSmDiFzohbcnLffjfrFQp472BPjoI/juu9iPj8Brr6mU7ObNqg45bx5ceKE5TYYRD1lva4ycp7hYywM2boRXX4Xq1dM9IyMe4rA1CbMz3n5JtTX+KWPuE1mvXujtzZrpRY5z8PDDum327LJXuc7BY49pDUu2UL++Rj7mzQv9erjWNLG0rGneXAt1glPSonGYYhnfd1RS3Lx2x+etUoQI09/+BuPHh3wtJxwmL2f3BWA2cAYaYt45inOHKn8NpUrzjnOuA3AKcEeoEznnnnbO9XDO9Wga73LJJZeo5UhwlGnIEFWFDGTTJt1uGEb05IytMXKahx6CTz+F//wnLgVfIwOI09YkzM54+yXV1vgXsDGfer/9NJ2uuLjEQXKu9NXs8cdrHur69WWPr11br7eySQmrZUu9D6eUt3SphlBmzy79d4nlCr9qVRUh6xSUxbl6tTpS4RxVf/zA/0Wk8c85R52l5s2jnxsVd5j8CFODaptKelsF07y5CmyESD/ceeeSt5mpRFMjMABdgbnIObelnH0DWQi0CnjeElgcbmfn3FcisquINHHOrYhhnOioU0dXRRo0SOhpwzVuDrfdMIywDCAXbI2Rs0yZAjfeCCefrJkERtYygNhtTVbZmbgcpmXL4PPP9UMeSfKxfXsYMyb0a3Pnavi1U6fskY2sWVOjHpGkxUeOVEdw3ryS9LpY+e9/y27r0kXzeytFlfBVPrVrx6XC16JFxYQCV6zQ1lu1TzsWztgY2vMpKtK0rN13h549S71UUABbt2rtXaKyExNNNDVMfZxz78Z4AQMwEdhNRNqJSDWgDzAqcAcRaS+i3ygR2RvtuB1btVosnH22rowkkHDfm3i/T4aRr+SUrTFyjk2bVEK8cWP4v//LnmtBoyxx2pqssjP+in9MKXlvvKERlL59ox9kS9Cf8JFHylwMZwXlNa/98UeNmrRqFX6faAiWVP7739WgJIrly1X174cfYjqsRQuN8ITQY4h62MaNA/y+UAayUiW46CIYMaLMS9nQiymswyQi47379SKyLvi+vBM757YDlwJjgBnA6865aSIyWEQGe7udDvwiIlNQ9Zm/BxRMJod16/TDlCDFvGHDNPoYSM2aut0wjPLJWVtj5BRXXQUzZ6r6cMx1IUZGUBFbk212ZvlyDTSE6h8altde04hH587l7/vdd7DTTvDZZ6W3z5mj6lfZtqJw+umaLhaOKVO06WpF3tfNN2v4JPAjUVwc//lCsXkz3HMPTJ5c/r4BtGihzlK8vXh3SNi/8IJGzEIhEtYxzQaHKWxKnnPuIO++brwnd859CHwYtO2pgMf3APfEe/64qFxZJcanTIGPP67w6QoL9X7IEE3Dcw569CjZbhhGZHLW1hg5w7vvajbNtdfCUUelezZGvFTU1mSTnVm+PI76pauuij41bK+91Bv78EM44YSS7XPmZJdCns+//hX+tW3b4Oef4bLLKjZG06bq0AQ2yDroIF2BGTUq8rHR4gsqVEBaPMbyJ0DfUpMmwLff6mciHGF6MWWDwxTVN0NEDhKRgd7jJiKShd8Gj9q1tdvymDH6j00AhYWatltcrD+o48dr9NYwjNjIKVtj5ASLF2vf8733hjvvTPdsjESR67YmLofp9NPh1FOj27d6dV09GD26JGLiXHb3YNq+PXTEZ+ZMTT3s3r1i5w8lLb5qVeJ6MIGmPNWoEbPD1HtgAQ5h356ikSD/5nsy5bB8uecwrVoVWvDBp1WrkLViOeEwicitwPXAjd6masAryZxU0rn4YrUkQ4cm/NQ33aSflauvzmy1D8PINHLS1hhZTXEx9OunLU1efRWqVUv3jIxEkA+2ZseKf7Q8+aSu/MbCCSeoCMKMGfp89Wote8jGCNPrr6sT+PvvZV9r3Vrru444omJjhHKYVq9OvMpBHM1rq64Kk4sXZY7ejqDZypWRHaaWLbWR3fbtpTbXr69//iVLopxwGogmwnQq2hV7I4BzbjEQd+pMRuBHmT75BL75JqGnbtBA/bAvv4QPPkjoqQ0j18k9W2NkNQ88oKJhDz0Ee+yR7tkYCSTnbU1MEabp03UhOda0ML/Xkp+CVbMmvPcenHRSbOfJBJo21RWSUMIP9evDGWeo9nVF8AUj/DGcS57DtK7c8t+YGD5cS9MqVdL7wF6jxcXqJ+2IMIXqweRz6aUahaxcudRmP5iVyRGmaGTFtzrnnIg4ABGJXa8wE/nHP2DatMj/2Di56CLt23bttXDccSq/bxhGueSmrTGykh9+0NrU007TlDwjp8h5WxOTw/Taa3olfNZZsQ3SqpWqoBx6qD6vWTM7nSUocWZCSYu//Tbsuit061axMZo0gWuu0fovUOnNbdsS7zBNnJjQcPjw4dpGYdMmfT5vXklbhcJC9fmKiz2HqX59aNMm/MkiNPvNdIcpmgjT6yLyX6CBiFwAfAY8k9xppYDateH555OybFi1Ktx3H/z6Kzz9dMJPbxi5Sm7aGiPr2LhRlZV32gmeeSb7BL+McslpW7Nxo6aRRuUwOacO0+GHR12vUopzzy1JNZsyRevDs7EewVc9CI4wOQfnnQdPPVX2mFgR0YvDgw8uOffVV8P++1f83IEkOHf4hHMbsXGT4Ci5bdwkHNNPPy++hH3TpsD//qfS8uFYuxbuvjukil/WO0zOufuBN4G3gD2AW5xzjyZ7Yinj11/hrrsSftoTT1T7c+ut2ojLMIzI5LytMbKGK6+EWbPg5Zcjp+Mb2Umu25qYejBNnqx1O9H2XgpmyxaNMn33nToVhYXZucJQs6b+wYIdprlz9SKuooIPPn/9VVLDVKcO3H9/SYQuUbzxhqa+JYgGbnXI7U2Ltb4pps+bc9oYeezYMi9lvcPkKceMc85d65y7BhgvIm2TPrNU8cEHqtQwfnxCTyui+e+rVsG//53QUxtGTpLztsbICt56S6NK11+vi15G7pHrtmb5cr0PG2EqKChRQdt3X912/vnxRZgqV4Z//lO/NNkqKe5z1VVw5JGlt/mSx34aXUW55BLo1Usfb9kC69cnPiL344/aByHa827ZUqamaAcRUuh8/M9bQaU/VRjjk0/C71y/vmZ4hZEWX7FCsxQzkWhS8t4AAnUWi7xtucHgwZp3kQTFvL32UoWlhx9WO2IYRkRy29YYGc/ChXDBBdpL77bb0j0bI4nktK0p12EKp3wWT9fSKlXg2GNV+OGPP7LbYbrxRjjzzNLbpkzR+q4990zMGK1bqxTc1q3aC7RevZibzJZLo0aqQrd+fXT733cfFBXxxvljEBzr1jp1tpzDLSk/5LMjJc/9qYpna9eG39lvXhuiVmznnXVY//ObaUTjMFVxzm31n3iPc0dc1VfM+/xzGDcu4acfNkwd9xtvLH9fw8hzctvWGBlNUZEucG3dahLieUBO2xr/gjMmWfGKcMIJmks1e3Z2O0zbtpWNfPz4I3TooP2NEkHr1uoVLF6sagmQHJU8iE5afM4cvVA94wy2HX4MoM1rfd55p/xT+A5Tw2JvvPLymFu1ysrmtdE4TMtFZIfsiYicDKxI3pTSwD/+oVGmJCwptmihoigjR2qKr2EYYcl9W2NkLPffr4ujjzwCu+2W7tkYSSanbU2pIvxkU1AA/fuXPL/33pganmYU99+vDo0vBwe6evLuu4kbw1fjmz8/+Q7TqlXl73vddbqq/+CDO3QvfIdp+3atWInE77/r561WLaixaVXp8cPRsmVpr8wjFxymwcBNIrJAROajzd4uSu60UkytWnDLLRpyTULy5HXX6QfhqquyUzzGMFJE7tsaIyOZOBH+9S/Nxhk4MN2zCUFgzUngLRsvSjODnLY1y5erWm/9+ikYLJHpfemmZUu9D0wXq1s3sSsogc1rfYcp0f+oxo31nIGOn0+wLXnzTZVV3HffMg7T88+rLtrmBqHrmJZJM44+Wnseb9oE158fRYSpoEBPvGhRGVvmBxVOOKFsr6dwROoPlWiiUcn73Tm3P9AR6OycO8A5Nzt5U0oTl1yi3QmT0DSpTh2480749lv9bBqGUZa8sTVGRrFhgwp77byz1klnpMBXLl2UZgC5bmuWL9d0vIz8LGcywQ6T34wtkUU1rVvDf/6jhZKrV6tjE05wIV4OPFCV/Xz58kAi2BLfYVq4UB2goUPhgAOg+qqlutr/6KPqmSzV53f9cylz5pT4ZfNX1Waa7MmITyNEmCKMHxjN8ns9RXKA/P5Q8+bp9KI5piJEo5LXTESeBd5wzq0XkU4icl5yppNmnNOcjB9+SPipBwyArl1VeWnLloSf3jCynryyNUbGcPnlWnrx8suJz4wxMpNctzW+wxSWcMpnUSii5TR+upxfX/PZZypznEiHpmZNuOIKrYvq3VsdsgyhZk0NDi1apL7R4sXaMmmH4z1woEajvM9JcKbiCPqyp/uZG+6Irw90cEBs06bIf54hQ2I/piJEk5L3AjAGaO49/w24IjnTSTNbtmgvgmuuSfipK1fW9Ng5c/SDaBhGGV4gX2yNkRG88QY895yK8iS6FYqR0bxADtuaFSvKqV9aulTDqk2bqtqJp4iWscUjqSIwxAIq+NC6deKbsc2bp+p7xx8P116b2HOD/i/79IFXXonpsOHDVVjvySfVJnbvHhSkql0batTY8dRvJxVMuO3xEOlcqRg/kGgcpibOudfxJDidc9tRCc7co0YNDQF9+aV2K04wRx+tCwp33llSlGkYxg7yx9YYaWf+fE3f6NkzKV0ljMwmp23N8uVRCD4ceaQWWFeK5jIwT6hZEx58EI46Sp9PmZK4/kuBXH65SnIuWKCpc4lGBD76SIszY+DCC0vK+J2DmTNDpLfdfrv2yqGkHMvnIS7nJc4ts70iRDpXuNcSOX4g0XxTNopIY8ABiMj+QASR9Sxn8GAtSktSE4777lMP/vbbk3J6w8hm8svWGGmjqAjOPVdVoF59NSmlqxWnqEjrakMVbhsVJadtTVQO08CBicmmybX0viuvhP3209SzX3/VMEuiadVKV2yOPVYbvyWDxo2jU8kLINjUbN4cIr3tiy9U9hlVIw9UW+/GVNpVmsewYXHMl7LK7bVqEfFcftueWI6pCNE4TFcBo4BdReRr4CXgsuRMJwOoWTOpUabOnfX78eST8NtvCT+9YWQz+WVrjLRxzz3w1Vfw2GOw667pnk0INm6E00/Xi7eRI3PvojT95Kyt2bZNgxYRa5hmzIA//0zMgJ4AQJlbtqb3LVumqXhz52pT2WREmFq31uau8+Ylr3CyUaPQfZjC2IylhN5eJr2tc2eYNg2co7AQnn4a2rTRoFazqqtos1djCgsjzCuCLXv66RLhz6ZN9dyRzlVYWFpgsE2b8o+pCBEdJhGpDBzq3Q5AZTc7O+d+Ss50MoSLLoJu3RJnUIK47TbN/rvuuqSc3jCyjry1NUbK+f577SLx979rVkzGsWSJFlS9/76mvgwcmHsXpWkk122Nf40cMcJ02WUlaWdGaW67TdMVO3dWFbsTT0z8GH7O2KZNyXOYwkWYli6Fp57SflkBtmT/NqFtSZn0ts6dYd26HdrjhYXqWxYXQ8edVtGqWzn1Xr4ta9lSF4QCbFlhIfzxh0aNLrqofMdn+fKSt3jxxTqPZDlLUI7D5JwrAk52zm13zk1zzv3inEt8o6JMo2ZNXWE488yknL5ZM20G9t57MHZsUoYwjKwib22NkVLWr4ezz9ba7qeeykDZ5V9+0XSgmTP1B+Kf/0z3jHKOXLc1vgJ2WIdp0yYYNw6OOSZlc8oqWrVSR2njRjUQiZb8htJeSLIcpl13DX/uiy4qIzYRnF4HYdLbOnfW+2nTyp535croBTLmz9d6sSBq1tQhJk0q/xSTJ5c89ltaJZNoUvK+FpHHRORgEdnbvyV9ZulGRBPcR49OyumvuEK/M1dfrZ65YRh5amuMlHHZZboKOXw4NGiQ7tmEoEYNveAYNy45K9uGT87amnIdpq++gq1bzWEKh9+L6cgj4YEHkjNGp07wyCP6OFmG6IknVPghmPnzQ0aegtPrwqa3de4MO+2kKYWBbNsGhxwCe+4Z3fwirFbts486Q85FPoXvVO2xR2ocpipR7HOAdx8oU+CAIxI/nQzjxRfh/PO1numwwxJ66po1Vd7/nHNU+TEjU0MMI7Xkr60xks6IEWrSb74ZDjoo3bMJ4rPP9AKtfXvNbsi40FfOkbO2xneYwtYwffKJOuahmpoaJb2Yvv8+eYaifn296KtUSZ2MVDJkiNqbxYvL2JnCwihS2po0Cd18tmpVGDMm+nk88og6b/ffX+alHj3g+edVRDCS4t2kSbD77urcxahvERflRpicc4eHuGW9UYkKv/37rbeW7+rGQd+++sG46SYTQjKMvLY1RlKZN08FUPffX+uXMoaiIlUqO/polesDc5ZSQC7bGr9lSdgI0yef6EV6zZopm1NW4UeYIDmCDz7TpkHXrhptSgYffKD/58DQi3MqZnbwwem3MxMnwttvh3xpn330PjDlLhSTJ+s1dMOGmZOSl7/UqKHdu776KinFRpUqaQrnokUhUzkNwzCMCrJ9u0byi4s1Fa9KNHkVqWDjRjjjDE37uewyVaEwjAriR5gaNw6zw6hRWvBvlKWgAHbbreT5OeeoY+FLtyVqDBE48EB1aEQSPwaoVOK4cSUfCNB85AULKt6l+/nntdYyMJAwfjy0axd976eGDcOGhbp2VTsdqY5p2TLtL2wOUyZxwQXQvLl2NkxClOngg+HUU+Huu03wyDAMI9HcdZf+lj/xBOyyS7pn4+Er4Y0apUp4jzySQZ6ckc0sX64XkGE/TrvsoirARllCpZpF2p6pY0CJxxwoLe63yqmow7RlC0yYoM6Xz7Jl6pBVqxbdORo21DqoorL9oqMRfvCjT/vsU+IwJeESvRTmMJWHH2VasSJpSZL33KOfv4xKFTEMw8hyvv1WVYLPPlsXizOGmTPh999NCc9IOBGb1j7yCLzxRkrnY6QJ32EKvG793/90e0XTAEMp5fnjhA1tBuEr+AWLR3j06BFZ+GHSJA3M7bWX6uQUFcGGDdENHS9ROUwicoCInC0i/fxbcqeVYVx0Efz0U/QfhBjZbTe49FJ49ln4+eekDGEYWUHe2xojYaxbp2WorVppdCkj8LtAHn64rsaaEl7ayFVbs2JFGIepuBhuv11rW4zcx5f3Doww3XSTqoxVqmCsJJTD5I8Trax4QYEa540bQ77co4eect680IdPnqzqeHXrlvheyRZ+KPevJiIvA/cDBwH7erceyZ1WhlG1qmrxr1unq4JJ4OabVTjlmmuScnrDyHjM1hiJ5JJL9Md2+PDS3eDTxpNPqgrexx/r84yYVH6Sy7YmbITphx/0CvTYY1M+JyMNNGkC3buXbq60225w3HEVP3ejRurwBEeYatQo28wpHH366AKSr0oYRHnCD5MmqVMFJQ5TsuuYokma7gF0ci7Z2YEZjnNacFSvnopAJFhhpFEjdZquukp/TxPxmTaMLMNsjZEQXn1VF1KHDoUDDih39+RSVATXXafKPiecoMXeRrrJWVuzfLmqQZbhk0/0/qijUjofI000aKAtCny++QZmzVJ55mjrjCJx6qnQrFnJ844dEypc07WrxiomTYLTTy/92pIlqoruO1Wpcpiiicv9AsQl3yEix4nIryIyW0RuCPF6oYj85N2+EZHMrUQUgQsv1OrhL75IyhCXXKLNma+5RpWdDCPPMFtjVJg5c+Af/1C/ZMiQNE/GV8J78EHNu373Xc0hMdJNXLYm0+1McXGElLxPPtGCj512SuWUsotAByCa7Zk6Riieew6uuEKzpRLBE09oyx2fgQPhhReiP37RIujdGz7/POTL1atrD9xQESZ/W6ojTNE4TE2A6SIyRkRG+bfyDhKRysDjQG+gE9BXRIIrzeYAhzrnugJ3AE/HNv0Uc/750KJF0hTzqlVTAYhp0/SzbRh5htkao0Js317SePGVVzJAeO7dd1XY4eGH4dFHM2BChkfMtiYb7IwvOrbDYfIlrEW04N9vipxoCetcYelSvbYLviVSwjgVY/iceSZcfrk+9vsvJcphAp13cXF8x4poOtWsWWF36dFDI0zBl9uTJmkZVvfu+twvm8qElLyhcZ67JzDbOfcHgIiMAE4Gpvs7OOe+Cdj/O6AlmUz16lo0d8kl6hUnIbR92mnaXPrmmzVyaouRRh4xNM7jcs/WGHFx552qjPfqq9C2bRonsmWL/l4UFmpuSZcuaZyMEYKhcRyT8XbGb7mzw2FKlYS1kZksWqRexOLFMHu2du9OFD//rH2kXnlFU4332Ufl6qNd7Y8iLLTPPvDMM5o1ENgSYvJk6NAB6tQpfaq0iz445/4HzATqercZ3rbyaAEEiLSz0NsWjvOAj6I4b3o57zztBD1mTFJOL6J9DP/8U6NNhpEvmK0xKsLXX8Mdd8C55+piU9oYM0Zzq6dO1efmLGUccdqajLczvsPUpEkqRzUylsaN1Yvw+y8ddljizt2qlTbH9YUfliyJLXpVs6YuKkVwmPyUu+C0vEDBB1DHqXLlDEjJE5GzgAnAmcBZwPcickYU5w6lihAyj01EDkeNy/VhXr9QRCaJyKTlgV2L00H16hrWvu++pA3Rs6f2DXnggdJ9wQwjlzFbY8TL2rUazGnbFh57LI0TeeopXW1t0iRpbSiMihOnrUmYnfH2SbitKRNhMvKbRo1UGfGXX1SwzM9hSwQNGkDz5uowOafjRCspHji/CF7OnnuWCD/4LF6s2Yu+4ANooMFvXptMoqlhGgLs65zr75zrh4alb47iuIVAoF5gS2Bx8E4i0hX4P+Bk59zK4NcBnHNPO+d6OOd6NM0ES+Av3yxZkrTWwv/+t576ppuScnrDyETM1hgx45yKPCxcqBLi9eqlYRLFxarW849/qMTpuHGaiWBkKvHYmoTZGUiOrVmxQu/NdBmALtqsXAnDhmnft0TWL4H2Y5o2DTZtgq1bY18k2muviMdUr64ZzYERJt95CowwQeY4TJWcc38GPF8Z5XETgd1EpJ2IVAP6AKWKKkWkNfA2cK5z7rco55wZfPUVtGkDn32WlNO3aQNXXqnpoYHetWHkMGZrjJh55RV47TXV4gkpp5wK/vtfTQm47DJTwssO4rE1GW9nLCXPKEW3bpqGV1RUUuiTSDp3hhkzSjz1WCNMo0fD3XdH3GWffUoLP0yeXFrwwaecYFVCiEb04WMRGQO85j3/O/BheQc557aLyKXAGKAy8JxzbpqIDPZefwq4BWgMPCHa12i7cy47msftt58qzQwdquIPCe7LBHDjjfDss3D11TB2bFKGMIxMwmyNERN//KEaPAcfrPYybZx/vi7rnxFNBqmRAcRsa7LBzixfrn1Dd/QObdYstMBDsiWsjcygf3/1ns86S9OFEx16PP54bVZbVAQXXZSUes0ePeDpp+H337Xv96RJ0KlT2f64DRtqMC2ZSDR920TkdOBANIf3K+fcO8mdVnh69OjhJmVKyOWppzQF45NP4OijkzLEk0/CxRfDO+/AKackZQjDKBcRmZyKH36zNUa0bNumjtLMmfDTT9C6dYon8Msv8M9/wsiRlgOVIFJlZ7yxcs7WnHuuZoPOnRuwcfhwOOccTZ3qFKyCbuQsBQXhneVkSJjHw113abbWR+G1UX78EfbeG0aMUL9v55016zm45dPZZ8OECSoGGA3x2Jpo0l1wzr3lnLvKOXdlOo1KxjFwoCqF3Hpr0mqZLrhAGyhfd52miBpGLmO2xoiW22+H77/X1ceUO0tjxsABB8Cvv5pEc5aSi7YmZNPaRo30CjNQl9nIfVIlKb9hgxaQFhXFfuyyZSpvGoHOnbVH6aRJqpK+bFnZ+iVIcw2TiIz37teLyLqA23oRWZfcaWUJfl+mCRNg+vTy94+DKlVUkG/WLA1oGUauYbbGiJVx41QYZ8AAXXVMKb4S3i67qMe2554pnoARL7lsa4YPhy++0AvLtm31OQC9e+sKfo0a6Zyekat06qSBgypVVAgtFho2hPXrteN4GKpV01KsyZNLxB/COUxr1sTfRzcawjpMzrmDvPu6zrl6Abe6zrl06BBlJkOHqme9554lHbUT3En7+OPhyCPhttuS70EbRqoxW2PEwpo1mmHUrh088kiKB3/ySU3DPvZYU8LLQnLV1gwfDhdeWJKFMm+ePh8+nPhW/g0jWgLTPGMVffCFKNasibjbPvuoszRhggr9detWdp9GjdRZWr8+tinEQjR9mF6OZlvekoKwp9/MdvVq7WRvGLmI2RqjPJzT2uLFi+HVV9MgRnfGGbpI9t57poSXxeSarRkyRJWdA9m0CYbc5LRm5eZoujMYRhx07qz3NWpo1lUs+A5WOZGAHj1g3Tp4/XUdrmbNsvv4vlcygwrR1DB1DnwiIlWAfcLsaySJbt20ZOrRR1UtxDByELM1RkRefFF/NG+/XRt8p4QlS+CKK1RlomlTrVmtEo3ArJHB5JStmT8/9PZN81eodJg1UTaShe8wbd4c+7Ft2sChh5a7m9+kdvbs0g1rA/EdplWrYp9GtESqYbpRRNYDXQPzfIFlwHvJm5IRjjvu0K7HN9yQ7pkYRuIwW2NEw+zZcOml+vt63XUpGvTnn7WFxDPP6GMjq8lVWxNO9OSgZrP0wW67pW4yRmYQTjo+kZLyBQVw3nklz2MtSTn4YO2ZU87n86efSh6/+25AfV4AaY0wOefuAuoDLwXl+TZ2zqWz40Xe0ry5Xii8+Wa5wiKGkTWYrTHKY9s2lY2tVg1efjnxDetDMmYMHHigFiSPG6fatkZWk6u2ZujQsttq1YJrTjaHKW9ZulRzmINviZQUT0FJyvDhWjbqs3p1QH1eAGlPyXPOFQMhyquMdHHNNeo4XX110pTMDSPlmK0xIjF0KEycqBLirVqlYMBXXlElvHbtVAnPnKWcIRdtjZ8hutNOusDfpo1+Vw5oOktXF9q1S+8EDSMUq1ZBhw6aax2GsPV5Q0pvS7vD5PGdiOybvClkOeHCm7GqhURJ7doq/PD992ocK1UKkhA1jOzFbI1RhrFjtb/heeep5kJK6NoVTj8dxo9PkYdmpJicsjWPPw67767ldsXF2ri2sBBNJ732Ws3lN4xMo3Zt7WW3cGHYXcLV5wVvj1I/okJEU7l6OHCRiMwDNqJdsZ1zrmvyppVFhApvbt2quSNJokoVXUVasUKf+xKi4BlJw8hOzNYYpVi1Cs49F9q3h4ceSvJgmzbByJGqrtO1qz42cpWcsTU//ADffQf/+Y8uoJbib3/Tm2FkItWra+5oBC+ndWu9xg21PZBatXRdIJmiD9E4TL2TN3yOUq2aLvM8+CAcfnh4WY84ufnmsul4mzbBVVdpe5AmTRI6nGGkCrM1xg58CfGlS+Hbb6FOnSQOtnSpXlhOnqzpd6EafRi5RM7YmieeUJnlAQOCXnBOl+FbtQrhSRlGhtCwYUSHadgwDQgEpuXVqqXbAxEp91QVptxvkXNuHtAA+Jt3a+BtMyKxbh08/DD06ZPwTlrhQpR//qmqt82ba3Pv66/XXiXTpmnRtGFkMmZrjECef14Fbu68M3Rn94Txyy+aujR9uvZXMmcp58kVW7N6tf7GFxZCgwZBLy5bpvn6TzyRhpkZeUEilPjK8XIKC7Uer02b0vV5obKpku0wlRthEpHLgQuAt71Nr4jI0865R5M3rRygQQMtHD7iCLjsMnjhhYSdOlyIcqedVEXvp59g6lT4/PMSR6laNZXL79ZNs038e4tGGZmC2RrD57ff1GwecYSWYCSNTz6BM8/U8JUp4eUNuWJrXngB/voLLrkkxIu//ab3ppBnJItEKO4deyzUrx9xl8LC6MpN0u4wAecB+znnNgKIyD3At0BWGZa0cOihKuVxxx1wzDGqi5sAwoUoH3yw9Idq61atp5s6tcSJ+uij0r5b8+alnahu3bR4NFRfxuHD9e3Mn69O27BhVjNlJBSzNQZbt6qprFEDXnopydlEGzbArrvCqFHQsmUSBzIyjKy3NcXF8OSTcMAB0L17iB1mmaS4kQXcf3/CTtWoUUIVzcsQjcMkQFHA8yJvmxENt9yioZ5LLoETT4R69Sp8St9JKc95qVYNunTRWyDLlqkD5TtRU6fCZ5+VRKOqVy8bjfrtN62R8p00E5owkoDZGoNbbtFSorffhhYtkjBAcbFqlO+3H5x2Gpx0UugVIiOXyXpb89ln6hPdemuYHWbN0ir4cF1tDSMbKCgI7QU1a1YmwtWwIcyYkbypRPMr8TzwvYi8gxqUk4FnkzelHKNKFU0ynjcvIc6ST7QhylA0awZHH603n61bYebM0k7Uhx9qHUE4fC18c5iMBGG2Js/54gu491644AI49dQkDLBpE5xzDrz/Pvz8s/YAMWcpH8l6W/P441qzHFZqf9Ys2GUX+3wbmc3tt8N//wuLFoV+PYbmuGlPyXPOPSgiY4GDvE0DnXM/Jm9KOUibNnoD+OMPNWIZRrVqGk3q2lWvJ3z8aNQxx4Q+LpwAhWHEitma/GblSpUQ3313lUhOOEuXajRp0iQdYI89kjCIkQ1ku62ZNw8++ECFnapXD7PTBRck9+rRMBKBCCxerClOFewX1rAhrF2rSQTJSOWO5ZQCOLIsbJ1RvP22Xg188UW6ZxI1fjTK9/eCsWi/kQTM1uQZzun13fLl8Npr2s8wofhKeNOmwbvvwuWX6w+1ke9kla0ZPlyF79q21YvCgoIIOx93HPTtm6KZGUacNGyo9wlw7hs21N+StWsrfKqQlOswicgtwItAQ6AJ8LyI/Cs508lxjj1WCzDPOaek62yWMGyYCksEUr16WS18w4gXszX5y//9H7zzDvz737DXXkkY4P33dQXzq680ymTkNdloa4YP17rhQIXcG2/U7WVYvx6+/lpFTQwjk0mgw9SoUcJOFZJoIkx9gX2dc0Odc7cC+wNWtRIPtWvr8unKlTBoUNnusxlMsBZ+tWoa8jzwwHTPzMghzNbkITNnwhVXwFFHqbBMQvHz3G+4QQszE9xE3Mhass7WDBlSWhkXSuqIyzBxIhx0EEyYkJK5GUbcJDjCBLBqVYVPFZJoHKa5QI2A59WB35Mym3yge3etan7/fa3azCIKC2HuXE0FmDFD00379FHBCMNIAHMxW5NXbNmiEuI1a8KLLyYw77y4WBs4de6shZYiWiFvGMpcsszWhKsXDrndejAZ2cKuu8KAAeF7McXQHDeBvldIovl52gJME5EXROR54Bdgg4g8IiKPJGdaOc4//6lythUscEsnu+wCzz4L33+vaQGGkQDM1uQZ//oX/PgjPPec9oRLCJs2qXTY/ffrik7CTmzkEFlna8LVC4fcPmuWNjJLii6/YSSQPfZQOeaOHUO/vnRp6VWBq6/W7KwQTXOT7TBFozf5jnfzGZucqeQRIvDmm1lfdHzGGdpe6sEH4bDD4G9/S/eMjCzHbE0e8dln6tMMHpzAsqJAJbyHHtLFqSy3s0ZSyDpbM2yYLsRv316yrVatMHXEs2ZB+/ZJ7vpsGAnCOc0KqFw59OvLl0PdulqbF0GaOe0Ok3PuRRGpBuzubfrVObctOdPJI/wf8ZEj9cf9vvvSO584uf9++OYb6N8fpkwx1TwjfszW5A8rVkC/frqo+MADCTzxnXeWKOGZuIMRhmy0NaedpqIP1arBX3+Fb1gPqMMUbsXeMDKJ7du1vv9f/4Kbbw69z957w7p1qm4aoZ9pskUfynWYROQwVE1mLiq92UpE+jvnvkrOlPKMH35Qr6NXL7WIWUaNGvD66/p5/vvfVYQqizMNjTRitiY/cA7OO0+1bz76qKz6Zlxs364NOu+9Fy66CLp0ScBJjVwlG23Nm29qtunnn8MRR5Sz83PP2Q+xkR1UqaKrANF4OQ8/HPHlmjVVvTmdog8PAMc45w51zh0CHAsko61gfnLHHbDvvnoFkaVdYNu3V1ng774Lo9hjGNFhtiYP+O9/YdQouPtu6NYtASd8+mntsbRunXpf5iwZ5ZN1tua//1UNh8MPj2LnXr2gR4+kz8kwEkLDhpEdpv/8B/7xj4ScqiJE4zBVdc796j9xzv0G2NJFoqhWTaXGt2/X/kxFRemeUVycdZbWItx3H4wene7ZGFmK2ZocZ/p0lQ4/5hjNrqgQvhLeRRepYpLVKhnRk1W2Zto0bat04YVRfMx//x1GjNB6D8PIBho2jBwW+vxz+PZbTbVu1Aj++CPiqdLpME0WkWdF5DDv9gwwOTnTyVN23RWeeALGjYMPPkj3bOLmP//RFeN+/WDBgnTPxshCzNbkML6EeJ06CZAQ37QJzjxT05kvuURDVnXrJmyuRs6TVbbmv//VtdUBA6LY+eOPoW9fc5iM7KE8L2f+fC3aq1tX9ytH+CGdKnmDgUuAf6K5vl8BTyRnOnnMueeq43TAAemeSdzUqAFvvKH1TH36wNixlkZtxITZmhzmxhu1d+z770NBQQVPdskl8M47poRnxEvW2JpNm+Cll+D006FJkygOmDVLi+h33jnpczOMhNC3r66ohWP+fDjkkBJVsQgOU6NGsGhRgufnEXGNT0QqAZOdcw86505zzp3qnPuPcy7COyt1/HEi8quIzBaRG0K83kFEvhWRLSJyTZzvIXfwnaWff06ei5xkdttNSwq++Sa84IlhBGO2Jrf55BONQF9yCZx4YgJOePvt6nldfrk5S0ZMVMTWpMPOvPEGrF2rmadR8dtv+kNs3wsjW7joIl34CsXatXpr0wZatdJt5USY0iL64JwrBqaKSMxi0SJSGXgc6A10AvqKSKeg3VahKzz3x3r+nGXVKnWcLrxQ5aSykL59dfr33KMqWIZRHmZrcpc//9Q03c6dK9g94dNPNSepqEh/OE84IVFTNPKIeG1NuuzMf/8LHTroAntUzJqlDpNhZAtFRSqbGoo1a/THo317TWNq1ixtKXnRZJHvjHbE/lxERvm3KI7rCcx2zv3hnNsKjABODtzBOfenc24ikNH9D1JKo0YamnnzTXj22XTPJm4eegi6dtVMw4UL0z0bI0swW5Nj+BLia9bAq6+q7GtcPP009O4NP/6oJzOMihGPrUm5nfn5Z611j0rsAWDbNpgzxxwmI7u4+27NN926texrbdrAL7/Aqafq80GDoGfPsKdq2FAFU5OhnxZNDdNtcZ67BRBY+r8Q2C/Oc+UX11yjq6mXXw4HHpiVDehq1tT+TPvsoxGnL79UuX3DiIDZmhzjiSdUx+bhh3UBJWaKi+H661XcoXdvbfRt4g5GxYnH1qTMzgwfri065s3T57VrR3lglSqqkletWjKmlXS2bdvGwoUL2bx5c7qnkpPUqFGDli1bUjXTissbNtT71as1ghSJf/87qlOtWQONG1d8aoGEvYQVkRpoYWR74GfgWefc9hjOHWo9JK4cMxG5ELgQoHXrmDN2so9KlbTKs2tX9Ta++05DkVnGHntoOsE558Ctt2pXcsMIxmxNbjJtmq799O4Nl10W50kGD4ZnnoGLL1avy1ZdjApQQVuTMDvjzSWkrRk+XCNKmzaV7Hvlleo0FRaWe1Jdkc9SFi5cSN26dWnbti1iNVgJxTnHypUrWbhwIe3atUv3dErjezmrVpV1mB54AD78ED77rCTMunGj9twL8Rlp1EjvV69OvMMUKSXvRaAHalR6o43eYmEh0CrgeUtgcYznAMA597RzrodzrkfTpk3jOUX2sfPO8PzzcOyxFdTfTS+FhXD++booMGZMumdjZChma3KMzZt1radePTVjcV/79O+v+b2PPWbOkpEIKmJrEmZnILytGTKktLME+jyqpvCff66FgttjWW/KHDZv3kzjxo3NWUoCIkLjxo0zM3oXGGEK5scfte+S/5l44gntTRFG2SHSqSpKpF+gTs65LgAi8iwwIcZzTwR2E5F2wCKgD3B2XLPMV048sURSyrmsVb15+GENkp1zDkyZAi1apHtGRoZhtibHuP56rb8YPbr8DIsy/PKLXvj5KckHHpiUORp5SUVsTUrsTLh69gh17iW88w688oqGdrMUc5aSR8b+bSN5OfPnl46a+j0p5s8PGUIKDFYlmkihix1FizGmxwQecykwBpgBvO6cmyYig0VkMICIFIjIQuAq4F8islBE6sU6Vs7z/ffQowcsWZLumcRFrVpaz7RpkzauzNLFLyN5mK3JIT76CB55RFVijz8+xoM//VQdpHvuydrWCkZGE7etSZWdCZcJHDFDuKBAF1Qff1wlmCtV0ucVbnhmGCmgXTttFdG+fdnX/Ka1PuX0YkpXhKmbiKzzHgtQ03sugHPOlWsEnHMfAh8GbXsq4PFSNKxtRKJePZgxQ7V5x4zJyhS9jh3hySc1w+a22+COO9I9IyODMFuTIyxbpsrfXbqozxMTTz+ttUqdOmloyv/lM4zEUSFbkwo7M2yYprEHZk7VqlVODfCyZbFtN0KycuVKjjzySACWLl1K5cqV8dMlJ0yYQLUYxTTee+89br75ZipVqkSVKlV46KGHOOiggwD4+OOPufzyyykqKuL888/nhhvKtPXKH3baKXTjzqIilVnOEIcp7JW3c66yc66ed6vrnKsS8NhWZlNJx466ZPvZZ6oWlaX06wcDB6rh//TTdM/GyBTM1uQGzun3e+1alRCPSadmyBBtXnj00TB+fEmDQsNIINlgawoLddEBSjQcnn46CsGHPGT4cGjbVteQ27bV5xWhcePGTJkyhSlTpjB48GCuvPLKHc9jdZYAjjzySKZOncqUKVN47rnnOP/88wEoKirikksu4aOPPmL69Om89tprTJ8+vWKTz3YWLYLly0tv27ABjjoKunUr2da0KVSvnlkOk5FhnHcenHGGXlhMiLXEI3N47DFdQC4szNoMQ8MwQvDoo5qO98ADsOeeMR68664aXXr/fY2oG0YeU7my1rVv2wZz55qzFApfTXDePF2smTdPn1fUaQrm888/Z6+99qJLly4MGjSILVu2ANC2bVuuv/56evbsSc+ePZk9e3aZY+vUqbOjbmjjxo07Hk+YMIH27duzyy67UK1aNfr06cN7772X2IlnGx07lpUMr18fPv4YzjyzZJsI3HILHHFEyNPUqKFtbVKdkmdkEiK6zDRhAvzf/0Vs3JXJ+PVM++6r9UyffaY/DoZhZC8//wzXXacaNRdfHOVBy5bBTz9pVGnQIL0ZhsGECVq2nM+/jVdcoSJR4fjuO/B8lx1s2qRry888E/qY7t1VdDNaNm/ezIABA/j888/Zfffd6devH08++SRXXHEFAPXq1WPChAm89NJLXHHFFXzwwQdlzvHOO+9w44038ueffzJ69GgAFi1aRKuAKHrLli35/vvvo59YLtKwYfRKDTfdlLBTxYJFmLKJhg01XWXUKHWggm9ZUuDZqZPWpo4dq3V+hmFkL3/9pRLiDRrAs89GKeY5bRrst58euGFDsqdoGFnD5s3qKOxnrbcjEuwslbc9HoqKimjXrh277747AP379+err77a8Xrfvn133H/77bchz3Hqqacyc+ZM3n33XW726nScK9u+K2MV7FJFo0Zlw0IPPgi77FK6oA/0RydERM+nYUOLMBmguf05UOA5YIA6THfcAYccAl6dpWEYWcZ116n/8/HHWrtbLp9+qunFtWuriE2dOkmfo2FkC1OnaipeTEkkzZqF/v2PWdM/cygvEtS2rabhBdOmjV5bJILatWtHfD3QySnP4TnkkEP4/fffWbFiBS1btmTBggU7Xlu4cCHNmzev2GSznVBhod9/hzVryhbE3nOPrrZv3gwhasuS5TBZhMlIG48/Dh06aH720qXpno1hGLHywQdal3jlldpju1yeeQZ699armu+/h332SfocDSOb8DOzYoowffaZ3r/wghb0+Lcc/mEdNkxT/AMpV00wRjZv3szcuXN31Ce9/PLLHHrooTteHzly5I77Xr16lTl+9uzZO6JJP/zwA1u3bqVx48bsu+++zJo1izlz5rB161ZGjBjBSSedlLiJZyOhvJxgSXGf1q31871oUdSnSgQWYTLSRu3aWs/Us6c6TZ98kt8524aRTSxdqqp43brBXXdFedAvv2jN0siRJu5gGCGYMAGaN4+xwfv48XqfR02efSGMIUNKrquHDUusQEaNGjV4/vnnOfPMM9m+fTv77rsvgwcP3vH6li1b2G+//SguLua1114rc/xbb73FSy+9RNWqValZsyYjR45ERKhSpQqPPfYYxx57LEVFRQwaNIjOnTsnbuLZyIUXlo0wBTet9fG3zZ+vPZyCaNRII7WJxhymXMS5KAsJ0s+ee+oK9XnnqbG75Zb0zmf48OQaYMPIBYqLNa12wwaVEK9ePcLOmzbpSuBuu2lOunNQxX56DCMU338fR/3S119r+t2uuyZlTplKYWHyfp+HDh264/GPP/4Ycp9LLrmEW2+9New5rr/+eq6//vqQrx1//PEcH3Nn7xwmVIrC/Plw8MFlt0fRi8lEH4zoGDIETjpJNX6LitI9m3IZOBDOOUcb2n75ZfrmkSqZUsPIdh55RMuP/vMfFXEJy9KlcPjhWqT4118aQjZnyTBCsmqV1rLHLIL79dcaXcqShVLDKMOqVTBxImzfrs+3b1c58YAUyB209HpDR3CYNmzQWsBEYg5TNhKukNPf3rChLlMdfzy0bw933w1//pm6+cWICDz5pC5An3126rUrVq/WWoyLL9bF8EA2bVL/0zAMZcoUuP56OPlk7TUblmnTYP/9NQ3vkUe0OYZhGGHxWyzGFGHavFmLgaMqIjQSxdy5c2nSpEm6p5E7+PUZ/rVqlSraSiewB5NPzZp60di7d8hT+c1r16xJ7BTNYcpGli4tXdgZXOB57bWwYAGMGKG5njfeCFdfXXJ8CEnLdFOnDrzxhn7AzzknuYGxpUt1rMsu0/qLxo3hb3+DdetC7x9mEcMw8o5Nm3RRo3FjbQcXdkH700/hgANU4/err+CUU1I5TcPISiZM0O9UTFooNWrAhx9qOoRhZCu+l+OrNWzdqrnf4Rg8GPbeO6pTJQpzmHKVatXg739Xfc3p08HT/+fnn6FrV5WoW7s2rVMMpksXXYj+7LMYisjLwTn44w948UWtk9p9d9h5ZzjrLHj+eZVB9lMBA/rIlaJWrbJtAAwjH7nmGpgxQ79PYRdXndNcPVPCM4yY+P57TXGNSQ9l69akzccwUkawl/Pcc7oYEE7pceFCTUUNQaNGpU+VKCyZPB/o2LHk8fr1+iG89FLNqzn7bPjHP2CvvdI3vwDOP199vFtv1Vq/UOmrkSgu1gu6r76CceP03leebNhQz3nRRXq/115QtWrJsXfdpYt0gWl5VavCxo26/1tvhVa4NIx8YNQozYK45hoVuitDcbHal/r14bXXdKnclPAMIyqc0wjT3/4W44EHH6xe1vPPJ2VehpESgr2c+fP1S9G0aej9H3xQU/bWry+T6uD7XokWfjCHKd844AAtrJs0Sa9+XnlFZa6WLtW8uDQr7InAU0/p9M4+G378MXIzzO3bdR/fQRo3ruRL0ry5NsU9+GC979QJKkWIqYaTKa1bV9ME99lH02wPPzxx79cwsoHFi2HQIF1kCNnnZNMm6NdPVyf+9z91mgzDiJo5c2DFihjrlzZuhMmTw6xgGEYWERxhmj9fxR3C9Zpp3Vo//6tXlzhbYU6VKCwlL1/p0QOefVYvcN57r8RZOvJIuOoq+O23tE2tbl11TJYt06yeSpW0q/fw4Sq09b//wZ13wjHHQIMGWid4zTVaY37yybrQ9vvvGrF97TUVc9hzz8jOkk9hIcydq4vlc+fq85NOUh+zSRP9XfrPfzKyDMwwkkJxMfTvrz7Rq6+GaKy+bJmuIrz9thboBoZtDcOICr9hbUwKed9/rwW/edR/KdlUrlyZ7t27061bN/bee2+++eabiPvPnTuXV199dcfzKVOm8OGHHyZlbjfffDNdu3ale/fuHHPMMSxevHjHa3fddRft27dnjz32YMyYMUkZP6k0bw4vv1wiIx6uaa1PBGlxc5iM5NCwoTpJoFdETZvCo4/CHnvAUUdpHtq2bVBQoOGf4FtBQVKm9csvurCweXOJxHe/fupMHXaY9mtaulR7wYwcqSvgs2Zp2uuAAbDLLokNlO2xh6ZLnHyy+pOFhWUV9QwjF/nPf7Su8KGHVIyrFNOm6ZL4L7+ow3TVVSZtbBhxMGGCin/tuWcMB339tX7fevVK2rwyliRdk9SsWZMpU6YwdepU7rrrLm688caI+6fSYbr22mv56aefmDJlCieeeCK33347ANOnT2fEiBFMmzaNjz/+mIsvvpiiLGgpU4qaNTWVx29Eaw6TkdHUrq3ex4IFGsKZNQvOOKMk3BOKJGmADxlStpa1uFinOGqUpi789JM2vT3rLBVySDZ168Kbb8K//60ChL16qaCEYeQqP/6oIpunngoXXBD0onMaejIlPMOoMN9/r6JfMQVox49XD6tBg2RNK3NJwTXJunXraOhdfTvnuPbaa9lzzz3p0qULI0eOBOCGG25g3LhxdO/enXvuuYdbbrmFkSNH0r17d0aOHMmqVas45ZRT6Nq1K/vvvz8//fQToI1x+/fvzzHHHEPbtm15++23ue666+jSpQvHHXcc20I0EaoXUBO6ceNGxFuceu+99+jTpw/Vq1enXbt2tG/fngm+Rn028d13uvgGWmx+2mnh943gMFWrpteKJvpgJJ+CAvVYbrhBm9/6EagUEk7Ke/36OIpiE4iIXkDutZfWWPXooWl/1gLDyDU2boS+fbWG8JlnggJHxcWa4/raa1C9uqmhGEYFcA5++AEuuSTGAwsLI0svZzuHHVZ221lnaZ59eaxYoQu+gYwdW+5hf/31F927d2fz5s0sWbKEL774AoC33357R+RpxYoV7LvvvhxyyCHcfffd3H///XzwwQcANGvWjEmTJvHYY48BcNlll7HXXnvx7rvv8sUXX9CvXz+mTJkCwO+//86XX37J9OnT6dWrF2+99Rb33nsvp556KqNHj+aUEItQQ4YM4aWXXqJ+/fp8+eWXACxatIj9999/xz4tW7Zkka92lU307QsHHaSpeeVE9mjaVDOgevQI+XLDhokXfbAIkxGeypXhxBPT0nAy3PVXplyXHXecClO0aqW90+66y+qajNzCL2V86SXtuwToxdn116ucpXPabTpTvpSGkaX89ZcGamOqXwLNUx8wIBlTylv8lLyZM2fy8ccf069fP5xzjB8/nr59+1K5cmWaNWvGoYceysSJE8s93/jx4zn33HMBOOKII1i5ciVrvZYuvXv3pmrVqnTp0oWioiKOO+44ALp06cLcuXNDnm/YsGEsWLCAwsLCHU6ZC3HxIdmYGt2woYaFNmyAJUsiLwaIaAQqzO+Pf6pEYg6TkTj+/W8VkNi4scKnGjZM+x8FUqtWGIWuNLHLLvDNN9ru6qabtN59/fp0z8owKs4776hi67XXwhFHeBv/+ktXd++9V1sT5PLKtmGkEP8nMyaFvN9+U2m9XF6pGzu27C2a6BKoSlPwsTHSq1cvVqxYwfLly0M6JdEQyZmpXr06AJUqVaJq1ao7tleqVInt27dHPO/ZZ5/NW2+9BWhEacGCBTteW7hwIc2bN49rvmmlUSP1cj74QEUgZs6MvP8PP8D774d8yRwmI3PZsEEvpE45RT/0xx6rXWgDvsSxUFioF2xt2uhCQps2+tyX/s4UatdW5bAHHoB334X990+rwKBhVJhFizSAtM8+cMcd3sZlyzQ95u23tf/F44+Hl3s1DCMmNm7UDKM2bWI4aOhQTV8yksbMmTMpKiqicePGHHLIIYwcOZKioiKWL1/OV199Rc+ePalbty7rA1ZKg58fcsghDB8+HICxY8fSpEmTUrVIsTBr1qwdj0eNGkUHT4XnpJNOYsSIEWzZsoU5c+Ywa9YsesYcrswAfC/Hr8lo1Sry/o89BoMHRzxVIrEaJiM6mjULXUzZrJne16kDf/6pRaijR+vt8sv1ouqSSzSZdMoUNfBldIlDU1iYeQ5SKEQ0fWmvvXQBft99tb1VOmutDCMeios1y2fz5gAJ8eJi1fCfPVsdJhN3MIyEsnGjitLGlEU1frz+nmZj6lUiKO+aJE78GibQ6NCLL75I5cqVOfXUU/n222/p1q0bIsK9995LQUEBjRs3pkqVKnTr1o0BAwbQv39/7r77brp3786NN97I0KFDGThwIF27dqVWrVq8+OKLcc/thhtu4Ndff6VSpUq0adOGp556CoDOnTtz1lln0alTJ6pUqcLjjz9O5Wxc0Ap0mBo2VKWtSLRural7W7eWua5s1EhblCUSiTfMmC569OjhJk2alO5pGNHw++/6oW/USJsjDRqkX4BjjoETTtDinyTJkqeL+fM1rXbyZLj1VpU/j6b/U6YjIpOdc6GrK3OUfLQ1996rJUr/939w3nkBL3z6qX6XwxTYGkYiyEc7A9BDxO2wNM2aac+MSCxYoBeLDz8M//xnsqeXMmbMmEHHjh3TPY2cJqP/xr/8AitXasrO/Pm6yB6J557TH6o//iiRI/e4+mp46qnwFSLx2JocuJQzMpZddy3pwHzmmZqz1qePSkcOGqQ5qkuW6OurV+dETUTr1jBunNbh3nab9m1asybdszKM8pk8WcUxTz9dv54884z2ZAPt2GzOkmEkn2hksb/+Wu+tYa2RS+y5Jxx6qDbejEZMqJxeTJs2lW1PUxHMYTJSQ5066j08/bSujk2ZonUQfgOl885TB2rgQG121KxZShvlJpKaNXXh4/HH4eOPVflo2rR0z8owwrNhgyq6FhTA008VIzdcDxdeqB/gHFjIMIysorzfvvHjtYC2W7f0zdEwEs3ChdoL9NJLw9YmlSLFzWuthslIPSJq6AON/dlnq/LWe+/BCy+EPzZJjXITjYiK+XTtqq0g9ttP31ZwWwjDyASuuEJLlP738V80Gnyu9rcYPFgjTLmQU2oY2c6yZWXrlapWjS6FL4twzmWnJHYWkPElON9+q1lIP/0EXbqUv3/bttrx2RO/CCTQYapgWdsO7JfQyAzOOEOrzP/8U3PaIjFypNZHZfqXH63JnTxZv/tnnqm9gIuK0j0rwyjhrbfg2Wfhpuu2c/DQI1XY4YEH4IknoIqtqRlGRpMli4jRUKNGDVauXJn5F/ZZiHOOlStXUqNGjXRPJTy+l/PJJ5pPVx7VqmkKTwjVQb8axCJMRu5SpUr5Uql9+uj9Aw+oPN3q1dpjoUcPaNky41SDWrTQ6V1+OdxzD/z4o/qGO5qBGkaaWLAALrhAlR1vvaMKPNlHmy+demq6p2YYRp7RsmVLFi5cyPLly9M9lZykRo0atGzZMt3TCI/vMF1zDfTqBQccUP4xo0droXiQpLKl5BkGaLOyiRPh4IP1+ddfqzQdaOy1Rw+9nXde+Tr+KaJ6dVVs6dFDVdZ79NDmoJ56qWGknKIilRA/4K/P+O8lULXqUTmluGUYRnZRtWpV2gWpnRl5hB8WguhEH0ALxmfODOswrVqVoLmR5JQ8ETlORH4VkdkickOI10VEHvFe/0lE9k7mfIwcYa+9tCDdl8Y86ihV3nvsMTjuOJg7F26/Hdat09fffFMdqn//W+WRw32DCgqSLjRx/vnw1VewbZsunvzVIPljliEF7zPVmK2JgqD/e+Uqwpdjhfc3H02L/7stK1JcDSOdJMvOTGYfBEftWvYdNPKUggLYZZeS561alX9dUlCgKeTTp5e+lqlcmd33EBzCOeeW3u4/3gf2iXWKSYswiUhl4HHgaGAhMFFERjnnpgfs1hvYzbvtBzzp3Rv5TixN6WrUUFWF/QI+Ohs2QK1a+njtWvj5Zw3p+Oy6qxYW1qqlyiz164fPBU9wjvh++2ld01lnQc2vUjNmVOfO0lx4szVREub/K6BpDRmWymoYmUSy7UybNjBsGHB1mN8+w8hl4rkuCfdaOGXXCiq+JjMlrycw2zn3B4CIjABOBgKNy8nAS04r/L4TkQYisrNzbkkS52VkAxVV/alTp+TxeefpbfVq9VQmTYI5c0ocqssvL+1MheLDD0s/b9JEiw0BvvwS/vqr9OvNmsE+3gLGp59qSCnw5RYt+OyzblC6OXXZIYuLaTr54zKvbSrYhY2tOiDbttJkymdlXt/YYnc2NW9PpS1/0finL0u9tm/4IbMVszUVJUTRrGEYpUiandlnH/1ZAqAwzG9fQUH0i4iGYSScZDpMLYAFAc8XUnalJdQ+LYBSxkVELgQu9J5uEJFfoxi/CbAilgknABszm8Z7+ulSTyOFaCefcMLkhI9f7piS+jEl7JhtkjGXBJFuW5MVxPl/NzKPdNj8VJEXdgbK2JotIvJLXLMKJTceG+n+POXz+Pn83kuNH8/vUzxpdT5z4zgmmQ5TqG9wcIJuNPvgnHsaeDrEvuEHF5nknEtpa3obMzfGszGzjrTammwkR/7veYn979JGwuwMlLY16fyfpvvzlM/j5/N7T/f4IjKp/L1Kk0zRh4VAoERZS2BxHPsYhmFEwmyNYRjJxuyMYeQxyXSYJgK7iUg7EakG9AFGBe0zCujnKcvsD6y1mgLDMGLEbI1hGMnG7Ixh5DFJS8lzzm0XkUuBMUBl4Dnn3DQRGey9/hTwIXA8MBvYBAxM4BTSkVZjY+bGeDZmFpEBtiYbyfr/ex5j/7s0kGQ7k87/abo/T/k8fj6/93SPH/PY4qz3hmEYhmEYhmEYRkiS2rjWMAzDMAzDMAwjmzGHyTAMwzAMwzAMIwzmMBmGYeQRInKciPwqIrNF5IZ0z8eIDhF5TkT+jLtfj5FxpPu7KCJzReRnEZkSj8xyHOOV+QyLSCMR+VREZnn3DVM49lARWeS9/ykicnwyxvbGaiUiX4rIDBGZJiKXe9uT/v4jjJ2S9y8iNURkgohM9ca/zdueqv99uPFjev9Ww2TkBCIiXnf1Uo9zacx0vEcjtxCRysBvwNGoBPJEoK9zbnpaJ2aUi4gcAmwAXnLO7Znu+RgVIxO+iyIyF+jhnEtJ89JQn2ERuRdY5Zy723MaGzrnrk/R2EOBDc65+xM9XojxdwZ2ds79ICJ1gcnAKcAAkvz+I4x9Fil4/yIiQG3n3AYRqQqMBy4HTiM1//tw4x9HDO8/5yNMItJeRBqISGPveYVaYsc49vEicpOI3CkitTwDmTPjhRh/FxFpLSI1Aral6u9dX0QqATjnXIree6rHTMd7NHKLnsBs59wfzrmtwAjg5DTPyYgC59xXwKp0z8NIGHn3XQzzGT4ZeNF7/CJ6IZ+qsVOGc26Jc+4H7/F6YAbQghS8/whjpwSnbPCeVvVujtT978ONHxM57TCJyAnAB8ADwAsicoR3oZn09y0i+wHPAb8DewJPAEeJSM1cGC/E+KcCbwAvAHeIyADYcWGfVKdJRE4CPgUeE5FHvXGLcmnMZI4X/P8R7TFi5CYtgAUBzxeSwh9OwzB2kAnfRQd8IiKTReTCFI/t08zvVeXd75Ti8S8VkZ9EU/aSkhIWjIi0BfYCvifF7z9obEjR+xeRyiIyBfgT+NQ5l9L3HmZ8iOH956TDJEpT4HbgYuBS4BXgdRE53jlXnKyL+IDzdgFGOOdGOudOAX5BvecDRaRSEsZP9Xg7EJF6wPXAZcDZwLfACSJyBajTlMSxdweGATcA9wJdReR1EanuvZ7wKEyqx0z2eAFpfveIyC7eaicicmSqfkCMlBHKDlhqp2Gknkz4Lh7onNsb6A1c4qWt5RNPArsC3YEl6OJ6UhGROsBbwBXOuXXJHq+csVP2/p1zRc657kBLoKeIpDStOMz4Mb3/nHSYvPDbcvTCfYlz7i/n3EhgEPCiiByexIt4Px1tItBBRPby5nQ/MAfoB1RKwviTgI4pHC+QImARsNg5txRt7Pco0EtECpM4LsB6NA98qnNurnPuULQh8yugX5IkOIupHjPp43lR163AgyJSR0T+jTZdXFOhmRuZxkKgVcDzlsDiNM3FMPKZtH8XnXOLvfs/gXfQNMFUs8yrsfFrbf5M1cDOuWXehXQx8AxJfv9e/cxbwHDn3Nve5pS8/1Bjp/r9e2OuAcai9UMp/98Hjh/r+885h8lfbfcuACuhUQ8AnHOjgCuAf4hI/URfSIvIkcAtIlIfmA9MAQ4WkXbe+PcCTYArEzTeriJSV0SaOOemAD8BhyRrvHA45zaiztlzIlLXe/4j8C6wpxcKTfTfuqr3cDuwGtg7YD6nAc1E5H7veaKdxXXAWmCfZI3p/71EpAqwjRS8R+fczWja3xS0EPicVKRUGillIrCbiLTzUi/7AKPSPCfDyEfS+l0UkdqiAgCISG3gGDQzJdWMAvp7j/sD76VqYP9i3eNUkvj+vd/RZ4EZzrkHA15K+vsPN3aq3r+INBWRBt7jmsBRwExS9L8PN36s7z+nHCYROQK4S0QGo0VdVwOHisiTAbt9CPwFbEvkhbSIHIPWEH3pnFvrnFvtjdUNOElE9vV2/QLYkoDxeqM1Q7cA/xWRfdDwYlLGCzH+USJyjReJwDl3Dfphe8xzmtYD41CPvUmC/9YneeNU8SKJ44BhAe8ZYDAJ/HyLyBEicpeIDAIqo1G0O5M4ZlMA59x2pwpGX5Gk9ygilbwVFoC26OelyP8xJXTqiJGFOOe2oynKY9DC39edc9PSOysjGkTkNTRrYg8RWSgi56V7Tkb8ZMB3sRkwXkSmAhOA0c65j5M5YJjP8N3A0SIyC1UMvDuFY98rKqv+E3A4yV1cPhA4FzhCSstYp+L9hxs7Ve9/Z+BLb5yJaA3RB6Tofx9h/Jjef87IinsOxH3AQ8AlaNjxfi9nczxa4PYM0BWVEzzKu9hOxNiVgTuAKc6510Xrp2qjEpYNUdnIg1FBhmOAY51zcXvyItIaGI1eMH8HnI9+0I5AIx/no1+QPxIxXojxj0f/1vcC/wCWOedOFpEWwDVo5OV8YH/v9b+5BMmWisixwL+B651znwVsvwRNIbsNTU88AU1HPNY591cFxzzRG/MdYBfgTefceyJyMZrmeTv6JUzImCJyCvA2cKlz7omA7ZehRu92VBY0rvFE5GhgdzRV81ERlSgXkbtQwZAz0c/sucBZzrlF8b4XwzAMwzCMbCcnHCbvQv1j4Grn3CfeBeeRwPvA/9BCymFo1KkH8A/n3M8JnsNNwEY0R3QUmtZ0ItDfOfeRiHRCL0YnOOfmVnCsAuBe51w/73lr4P+88x/vnJsiIh1Q57DC4wWNvTPwMnCPc+5Tb9sY1IGZ4j2/A2gDtEaLC6ckaOxOaNTueufcSFGp+K5ondpMz5H7G7qa0BIY5Jz7qYJjVgOeAp51zn0tItejTvBINKR8EHC6N2aLio7p/S+fAb5GBUvucM49HvB6IXCAN1bM71FEDkIdvxtQB/NHdGVznIicDoxyzm0TFZS4AHjPObcg/BkNwzAMwzBym5xwmABEpKVzbqHnPE0HXkXTmhaiF7y/eqvodVyJHnsixz8dOBSYC2x2zj3hXcC/DBxe0Qv3oLGqoRGzScBQNIw4H3XYdgVudc5tS9R4QWM3BPZxzn3m1REVo3mnzzjn3gvYryoawUhYOqCI1EKFDiYBnwMPo7Ks1dHo3c3efGoCVZxzyxIwZiXUCV6GRtQ+Q6NJG9D6sH8AK4C6iRjT+98e7Zwb7aVZfgrcHOQ01QTqoH/fmMYTkauAus6520T7Zf0LqIc285vk7VPZJVmW3TAMwzAMI1vImRom59xC7+EmNIL0D3SFfifgEL+GJhnOkscH6Kr/QGCdd9H5IdqMLmF9bbx6k61oZKMlcCNad/IkGi1okgxnyUs7xKvN+s57vM27sJ6G1oX5UtS1vdcSWjvlnNuEpqB1R/+uzznnzkTT8HYC9nTObXLOrUyEs+SNWYw6Re2Be9B0vL+jjsbvwMHOua0VHVNEani1X1uBj73/82S0OPEOL+UQEekJNHDOLY9zvKnA/iKyu3NuM5pKugFNwfPfszlLhmEYhmEYHjnjMMEOZ2K1c+5Vry7jTzTa1DjJ41b2nINC1Hk4DDhWRM5HC9kScvEOegEvIlWdKtGd6Jy7FOjrOUldgAZeJCZheCIL/xaRJt4cNnjbfTGAWkAtEfk7mk7WKIFjHywi/whw2PyL+6udc0972yajaZctkzTmUuBYNLq0ztu2BHWE2yRgvBPQFL8PRKS/57A47//8A+o0/UtE3gUeIcZeHSKyj5T0apqJficOEpGdvc/t7WhfggEVfS+GYRiGYRi5RlY6TCKyh4j0EpGqUiIjXsVzJvyLXOddAJ6FplQlauxWIlJNVIbTl332L2CrA33RgvxuqM78KRWpAQkznh8BaO3dF4lIH+BW4E4vEpMQRKQbWh91GnCBiAQ6Q77DtAJV67sEdeISUvMiqnr4CVqPdmXA/3aTK+lhgIiciTqLkxI85lUBYxahdXIHiMjtInIOKqzxbgXHOxYV7HgEuBO4R0SOdco2zxn/AXgJjSpe6Dlw0Z6/AFUGesE71yJUBOUA4HgR6eBFmt5H0xkNwzAMwzCMALLOYRKR09CamTtRXflLRaShc267l650gYg0FO2JdCUaffktQWOfAHyENmV9XkT2cCr7XCwiBwDfAK2dc0865+4CznXOTU/ieO+KSEdv9/Wo8l/CaqU8aqJO4GGo0t9lvtPkSqSo/wDqoxfzcb/fEDRG65IeR9MOdzgwXm0RItIXVbA7O0HiFoFjtgkcE+0EfRvQEVUk7FeRz5ZXi3QQWqP0uSeicSeqxAfsaEq7F7AvcEQc/98tqLT8PsBIz2l6BxUm6YBK0j+MyttOjPe9GEasiEi56dFetHeaqAxuzQqON0BEmgc8/z9PSMYwjCxARIZ49uAnzybs522/ItbMGhFpKyLp6DsVMyLyoYg08G4Xp3s++UpWiT54QgKvAI94imWnA/uhdUvj0HSw851zX4hIPaC6S4B0uJd61hJVaLsM7ZlwDtrn6Vjn3M+iSnGPeMX6lTynRlycf2BR8Yox6IVsxPEq+v7KmYegNTOrRaQNWis1AXjUObfS+ztXQ//WCZWf9sb2I3i9UYn0hcD9fp2NlyZY1zk3J8ljPuC0b8aOfRJRKyYinVHhivVeVPSfwAHOuT4B+1QD6sf7WfYM7GjgfrTW7Ek0tXARqqzYARjrnJtdoTdjGDEgIhucc3XK2ecp4Hvn3PNRnlPQ37Uy0VIRGQtc44ubGIaRPYhIL+BB4DDn3Bbvt7+ac26xiMxFm62XaV8iYUSMRKQt8IFzbs8kTz1ugu1ZNsw5l8m6CBOq6LWb9/gdVGyhKppCdZFz7gsA59y6RDhL3rkcsBiVep4F/OmcewBNpfrIW7U8xXOWdny4K+As1UTT3MYBv5U3nvelSgpeathq733NQ9PuegKFooprw4F1iXaWAsbe5jkqn6CKca2A/iIyWEQudM6tSJSzFOWYF/j7JGi8ad5n1f+s/IpGCxGRc0XkVKeiElF/lkWkvYj0CFiRb4z2UzoT2AP9HLdzzq1xzo13zv2fOUtGuhCRw0RkrIi8KSIzRWS4Z9bOR1Oqb/G21RGRz0XkB9Fmgyd7x7cVkRki8gTwA9BKRK7z9pkqIneLyBloS4nhfrTKG7OHd46+3v6/iMg9AXPbICLDvPN8JyLNUv8XMgwDbd2xwqu7xfvtX+wtMjZHG5N+CTu+t7eLyPdALxG5yvtu/yIiVwSfWER2EZEfRWRfEdlVRD4WkckiMk60RUvw/odKSQPYH8Vr8i4i14rIRNEI2G3etnskICokIkNF5OoI+4eyZ3M9B/FuYFdv3PtE5GXfDnrHDhetOTeSgXMuq26oiMIoVJ0MoDKqnPZcwD6SwPE6A4cD7dDC/BuCXr8ReB4VPqjwuMDJaDqYP96QZI4X5xyroDLmC4GuKRy3OuqsfQOs5v/bu+84qcrrj+OfQ5MioIKCioAKNhRRFuwtGnvsURFF1EiMsSf60xijxhg1GnvvDYXYe1fsBVAsYEdE7GIHkXZ+f5y7MCw7u7PLztwp3/frNa+duTNz75mFOXuf+zzPeWDtcjsmMfftDGAvooBInwa+f0fgDeCp5P9Pb6IH6Uii4TeRmNN0O9Ayjf8/uunm7gA/Jz83Jxbc7kZcxHsR2Dh57npgj+R+C6BDcr8z8AExj7InMf9u/eS57ZLva9vk8VLJz1HEVWgyHxMnW5OJZShaEENYd0le48TC2xDLCvw97d+bbrpV4o1YSmMccRH5UmCzjOcmERWCqx87cZEQYjj6m0C7ZB/jgXWSvPEWcRHxNaBf8vongN7J/fWAJ2uJ5T5go4y4WhCjUa5MclIz4mL+psmxns547wRi/nm21y+QzzI/X3XMGds3A+5O7ncEPiJGv6T+71WOt1LsYXqWuPK/n5lt6u5z3P1GoKeZ9YPG9+zUZGbbAbcSc6FOBS4G/mRmx2e87FZgpkchgkU6rpltRpSuvtej1+RYYFjSk9Pkx6vl+AsVmLD5c4V6Zrx0XaA1MTywSeZMJcdtVWNb9Xyl9hZFPX4lEtjKRLJ6vZSOmcvxiIbw/yW33d19fAP2vyEx7G5/d98CmEr8H5pMDCV9BzjE3TcgErKulkuxeMXdp3j0zo8jTgxqMqJa5xtExcrlmf9/+GN3fym5vxVwnSfFb9z923qOPYAYkvq1R8/ycOLEBWAmcSIDUcyntrhEJM88KuT2B4YBXxNzcodmefkc5hf72hi4y92nJfu4k5iPDXGR5B5gX3cfZ2aLEwWRbjOzccAVRM9WTc8D5ya9W0skeWPr5PYa0TO0GtHweg1YxsyWsyii9Z27T872+mT/mfmsrt/J00AvM1uGmGt+RxKL5EGLtANoKHefYWbDiSsIJyTdpb8Sfzg/b6rjmNnmxMKo+7r7K2Z2H3EC+hvgWTOr/kO6IdDfovDEd4t42P7A1e7+iJl1J65c/B241MxmEFc+NmjC481jUWDiLCIRLGlmJ7n7u8lzGwKXmdkgj6IOs4CB3jRFFqoX/R0EdLAoQPCCR3n4ORZV6w4i5nJ9B3xFNNQWqbhEoY/ZgON9TMw3Otbd32nEoc5MEjRE1cRr3X16kth/dvdnANx9z8Z+FpE8yFyzbQ61/20aTJzg9PeoIDmJuHADsWh3NaNhpffrGtI8K+PCVLa4RKQAPOYijQJGmdmbwP5EL3RNM3z+vKW6vt8/EHOINyJ6npoB37t7v3riONPMHgC2B14ys62S45zh7lfU8pbbgT2ArsQakmR7fXJxehq5u4nIjXsDBzbgfdJAJZn8PebUXEV0bf4RmEE0bJpsvSNi7aQ/Jo2lrsTQjbOJggdXE42b3sn2A5qo8TKb+YvcjiDmTX1IdCdvTXQdb9iEx8ssaHEmCxaYeMqivPWbxIn336obDBkn5E1x/FWIynAHEldv/0hcMbmHKFBwClHc4rvk2CNL7ZgNPN53Zrafu3/fiEO9TAwxqO65WgzoZmad3f1BM+tgsbZTky9sLFIAHYn5nLPMbAuyr4H2KDHv6ZbkYsFSSS/TT0D7Wl7/MnBBMkfgO+LCxkV5iF9EGsnMVgXmuvv7yaZ+xAVGmP/dXqjoA/AMsazGmUQjZVdgv+S5mcAuwCMWRWhuMbOPzOz37n5bcn7Ut+bIEjNbOTk3etOiGMVqRJGu08xsuLv/bFG4a5bHeqAjiKJknYlhdGR7fT2/htpy2PXEeekXDRmRIg1Xkg0mAHefSZzUPxMPF66KtIj7f5toPEBc/b/E3f9lZgcTQ9JOdPdJTdzT8yRwh8VE5Kvc/brkZHsu8JK739PUPUvu7mb2GTFvYF5BCzObRRSYGEiM5/8lSR5NNuQxsSTwpbu/CLyYXDU+kLia+xhwsLu/28THXqrAx8z1MzZPhph+35iDJFfUfkweGvA90f3/jZkNJoYm/JX6k7JIMRoO3GdmY4hhe7X2wLr7w8nw7DHJSIAHgb8RJxaXm9kvRE999es/N7MTiHl/Bjzo7vfk8XOISMMtDlxkZksQF5c/IIbnQcwFesjMPk+Go8/j7q+a2fVEowJiFM9r1dMM3H2ame0IPGZm04jemsvM7O9EQbERQM2h+EclF23mEBfuH/Ko3Lc68Tce4Gfi4vNX7j7eojDEpx6L3uPuj2Z5/UIV/TI+y1Qze96iHPpD7n6su39pZm+ziGtCSv1Kqqx4sTCzh4i1c8aYNb50eJZ9/45YxPQmd/9Hsu0aYtLgjU15PDPrDSxBVGa7BnjO3S/IeP4EYBWiMt4vTdxQyozjRmJ4450e62ltSKyFdK7H2kRNdZy2yRXnZsTnfSjfx8w49k3ERNGCHC/juNcTQ1W3BoYmV8VERESkxFmsP/UmsK67/5B2POWsFIs+FFR1L0PG492BZYgKcU3d2wJxEn8ysK+ZHWRmBxGV055vyuOZ2S7EuNq/AUcRhQH+aQsuipaXAhNmtq6ZbWzJonNEIY/1gY2TIWMvEFd1DrYohNAUx9wG+LPNL7U9lqh+l5djmtlvzOxgM6u+AvYsUTwib5+xxvHNosDEJiTjm9VYEhERKQ/J3Kl3iHUx1VjKMzWY6lHdUDCzxZLGyz+JKmRf5Ol4sz2q/u1BVGZbg5iz9GFTHcPMOhHzaAa5+67AF0Avolz7GWb2l6T3aXOSAhNNeOwdid6dYcCxyVCxG4ju6B2JiYsQk7Zn0LDJ29mOuR1REni0u/+SDN+8Pjnmzk19zOR4FxJzLva1WBdhODFcbpemPl5tPMwETgO2yxj3LSIiIiXO3R939+7ufn7asVQCDcnLkZm1JNaA+tCT6nGlysw6EkPgTvZkod+kAMELxLy2lYh5U/2AA5uqZ8LM1iEaR/u5++tm9ntiPa0jkvG9g4iiFj2JxVaHLGqBCTNbg6g6d4a7X5k0FrsA05M5aPsC2xKFLxb5mBYl2e8kijg8YGaHEXOJRifzlAYTlXWWb4rj5RBPkw4ZFREREak0ajBVKDM7hCil+ShR4aUn0WBa0d3/mrxmicYWIMhyzA2JijOXJ497AbcQC8xNqj65TyZsf5ZUl1nUY/Ynina8Sgyj/CtRHn5pohHzf8nr1iIKMyzSMZMG0yXAbcCnxETMl4nf77vuPiR5XV+iqs0if0YRERERyR8NyatctwIPE+tKtXX3we5+CbBGUoWGpmosJZX+SObt3JFsa06UTf8SqF5YsnfyunFN0HCpPuZYYjhcH6IhczsxJG5/oMrMNk1e9+aiHDPjeNOICl5Dico9/3P3vdx9PWD1pIcJd39DjSURERGR4qcGU4Vy9x/cfThwkLsfDWBmQ4iqeU1WdjqZszTOzEYkx/3azJolJbBnAM2T1+0HnNMU86VqOebzRAPxr+5+eTK/5xNiwbqZeTje+USD7GKiB6/aUyy4QKeIiIiIFDk1mCpcUgABMzsQOJ5YrLchq0xnlQxPO4yowjfDzG6uPmbSw9SMWNH6XOBI4HhfxDWmajnmLckxXyF61KpftzvR6/R5no43nVjT5VozG5hUy/st8MaiHE9ERERECktzmAQAM+sBtHT3D5p4v8sR1eFaA5cDM9x934zn7ybWetq1qYpp1HLMX919cMbz+xONnAPc/a18Hs/MTgJWBzoQDcJFPp6IiIiIFI4aTFIwSYW6K4lFcPdNSpcfANzs7hMKdMzVgS2Ah919Yh6PN8vd9zazlYjG0oSkzLeIiIiIlBA1mKSgzKwzcDZRoQ+irPiXBTrmhsQwuc3cfZGG4uV4vI2S423h7lPydTwRERERyR/NYZKCcvdviHk8HYDd891YqnHMjskx89ZYqnG8DsBuaiyJiIiIlC41mKSgkip42wNbN9WCuMV2zDQ+o4iIiIjkh4bkScGZWWt3n1HOx0zjM4qIiIhI01ODSUREREREJAsNyRMREREREclCDSYREREREZEs1GASERERERHJQg0mERERERGRLNRgKiFmtquZuZmt1sD3vdDI4/U0s7eyPDfUzJZrzH4LoWZ8Zna1ma2RZkwiIiIiUnrUYCotg4DngL1re9LMmtf22N03zEMsQ4GibTBRIz53/4O7T0gvHBEREREpRWowlQgzWxzYCDiIjAaTmW1uZk+Z2S3AmzUfJ6/5Ofk50sy2z3jv9Wa2e9KT9KyZvZrc6mxgmdkeQBUw3MzGmVkbM9vSzF4zszfN7FozW6yW97UzswfM7HUze8vM9kq2DzCzF5Ltr5hZ+2wxJZ9vlJndbmbvmNlwM7Mc4htlZlXVvw8zO8vMxprZ42Y2MHl+opntlLymuZmdbWajzewNM/tjA//JRERERKQMqMFUOnYBHnb394BvzWzdjOcGAie6+xpZHlcbAVQ3UloBWwIPAl8Bv3X3dZPnL6wrEHe/HRgDDHb3foAD1wN7uftaQAvgT7W8dVvgM3df293XBB5O4hgJHOnuawNbAb/UE9M6wFHAGsBKREMya3zu/kuNONoBo9y9P/AT8C/gt8CuwD+T1xwE/ODuA4ABwMFmtmJdvxcRERERKT9qMJWOQUSDh+TnoIznXnH3j+p4XO0h4DdJ7892wDNJY6IlcJWZvQncRjREGmJV4KOkMQdwA7BpLa97E9gq6d3ZxN1/SN77ubuPBnD3H919dj0xveLuU9x9LjAO6NnAeGcCD2fE9LS7z0ruV+9ra2CImY0DXgY6Ab0beBwRERERKXEt0g5A6mdmnYDfAGuamQPNATez45KXTKvxlpqPAXD3GWY2CtiG6LW5NXnqaOBLYG2iET2jlhiuI3p2PnP37Ws+nSXuFYD7koeXu/vlZtYf2B44w8weBe4meqhqqiumXzPuz6Hh/49nuXv1MedW78/d55pZ9b4MONzdH2ngvkVERESkjKiHqTTsAdzo7j3cvae7rwB8BGzciH2NAA4ANgGqGwMdiV6eucB+RINsAe5+QDK8rbqx9BPQPrn/DtDTzHolj/cjem0+Sd7TL2ksLQdMd/ebgXOAdZP3LmdmAwCS+UstcompHpnxNcYjwJ/MrGUS1ypm1m4R9iciIiIiJUgNptIwCLirxrY7gH0asa9HieFyj7v7zGTbpcD+ZvYSsApZeqhquB64PBmyZkQj7LZkCN1c4PJa3rMW8ErynhOBfyUx7AVcZGavA48BrRsZU63xmVmbBr4X4GpgAvBqUlr9CtQjKyIiIlJxbP7IJBEREREREcmkHiYREREREZEs1GASERERERHJQg0mERERERGRLNRgEhERERERyUINJhERERERkSzUYBIREREREclCDSYREREREZEs1GASERERERHJQg0mERERERGRLNRgEhERERERyUINJhERERERkSzUYBIREREREclCDSYREREREZEs1GASERERERHJQg0mERERERGRLNRgEhERERERyUINJhERERERkSzUYBIREREREclCDSYREREREZEs1GASERERERHJQg0mERERERGRLNRgqkBmNtjMHk07jjRU8mcXaSgz+9nMVsrTvjc3sykZj8eb2eaLuM/rzexfdTw/7/NkvtbMNjGzdxfl2BnH6GlmbmYtmmJ/dRxnkpltlc9jiKTNzP5lZt+Y2Rdpx9IQZvY3M7s67TiyqS9XysLUYCoyyR/BX5I/7F+a2XVmtnhTHsPdh7v71k25zzSY2Sgz+0Mdzy904lIun12kMRqaX9x9cXefWIjY3L2Pu4/K8zFq/Tzu/qy7r1r9WI0RqXTJ385eNbadYmY3FzCGFYC/AGu4e9c6Xreimc01s0trec7NbFqS8342s+/zEOcCF38A3P3f7p71/KRc1PbZy5UaTMXpd+6+OLAuMAD4e80X5PvqpYiUrbznF+UnEWkCPYCp7v5VPa8bAnwH7G1mi9Xy/NrJxZLF3X2Jpg5SKoMaTEXM3T8FHgLWhHlXSv5sZu8D7yfbdjSzcWb2vZm9YGZ9q99vZiuY2Z1m9rWZTTWzi5PtQ83sueS+mdl5ZvaVmf1gZm+YWfXxFjOzc8xscnI1+nIza1NbrGbWzMz+bmYfJ/u60cw6Js9V9/Tsn+zrGzM7MeO9A81sjJn9mBzn3Izn1k8+1/dm9nr1kB0zOx3YBLg4uWp0cS1hPZP8/D55zQaZnz3jd3qomb1vZj+Z2WlmtrKZvZjE8z8za5Xx+qy/b5FSkmN+mXeV2cw6Jt/rr5Pv+d/NrFny3FAzez7JJd8Cp9Q8npm1sRgG8p2ZTSAaa5nPz+vVqScn3GZmXyT56hkz61PjUJ3N7LHk+/y0mfXIeO9CV82T7fOukprZTUB34L4kbxxnZg+Y2eE13vOGme1S3+85+b1dY2afm9mnFkOMmif59fvqfJu8dmmLHsBlksfKN1KUzKyzmd2f/N/81syezcgHy5nZHUmu+MjMjqhjP7XmlSQXPAYsl3wPr68jnCHEhZ9ZwO8a+XlWNrMnLc6VvjGz4Wa2RMbzk8zsr8n3/gczG2lmrc2sHZFHq+P8Ofn8C/TGmdnGNv9c5hMzG1rX588xpnXN7LUk192WxFQ9zHiBc51kW635L3murnPJhn72rPm7pLm7bkV0AyYBWyX3VwDGA6clj51IIEsBbYgrxF8B6wHNgf2T9y+WPH4dOA9oB7QGNk72MxR4Lrm/DTAWWAIwYHVg2eS584F7k+O1B+4DzsgS94HAB8BKwOLAncBNyXM9k9ivSuJeG/gVWD15/kVgv+T+4sD6yf3lganA9kTj/rfJ46WT50cBf6jjd1l93BYZ2+Z99ozf6b1AB6BPEtcTyefoCEwA9k9em/X3nfb/G910y+XWkPySsa1Xcv9G4J4kF/QE3gMOSp4bCswGDgdaVL+/xrHPBJ5N9r8C8BYwJUtsteaE5PGBSQyLJTlqXMZz1wM/AZsmz19Qy/e9V8Zr/5Xc3zxbLMnjPYGXMx6vneSiVrV8zgXyDnA3cAWRh5cBXgH+mDx3LXB6xnv/DDyc3K8z39SMUTfdmvKW+V3J2HYKcHNy/wzgcqBlctuEOIdoRpxT/ANoRfwtnQhsk+U4deWVBb6XWd6/CfF3e0ngIuDe+j5Hlv30Is4xFgOWJi64np/x/KTku7sckcPeBg7JFmeN31X3JC8NSn5XnYB+OXz+rDElv9uPgSOTfe4GzGR+ThtKRu6r+btgwfyXS65pyGfPmr9L+aYepuJ0t8U42+eAp4F/Zzx3hrt/6+6/AAcDV7j7y+4+x91vIBLH+sBA4j/3se4+zd1nuPtzLGwW8UVdDTB3f9vdPzczS/Z/dHK8n5I49s4S82DgXHef6O4/AycQ3eOZQ3NOdfdf3P11ojG3dkYMvcyss7v/7O4vJdv3BR509wfdfa67PwaMIRpQTeksd//R3ccTJ3GPJp/jB+LqyTrJ6+r6fYuUilzzyzxm1hzYCzjB3X9y90nAf4H9Ml72mbtf5O6za74/sSfROPjW3T8BLqwjxmw5AXe/NonhV+KkZG1LerMTD7j7M8nzJwIbWMyFWBT3AL3NrHfyeD9gpLvPrOtNZtYF2A44KsnDXxEXsarz6C3ESVS1fZJtoHwjxW0WsCzQw91necwDdKLneGl3/6e7z/SYM3gVtZw75JhX6rM/8JC7f0d8d7ar7qHN8GrSc/K9mdWad9z9A3d/zN1/dfevgXOBzWq87EJ3/8zdvyUuIPfLMcbBwOPufmvyu5rq7uPq+/z1xLQ+cXHqwmSfdxKNmsbIJdc05LNnzd+lTA2m4rSLuy/h7j3c/dAaJx+fZNzvAfwlIxF8T1y5XS75+bG7z67rQO7+JHAxcAnwpZldaWYdiKsZbYGxGft+ONlem+WIqx3VPia+zF0ytmVWuZlOXHkAOAhYBXjHzEab2Y4Zn+/3NT7fxkSSbkpfZtz/pZbH1XHW9fsWKRW55pdMnZl/RbPax0QvcH3vrbZcjdd8nO2FZMkJFkPZzjSzD83sR+LKZ3V8C8WRXLz5lkX8jiaNr/8B+ybDZQYBN+Xw1h7E1d/PM3LGFURPE8CTQBszW89i6GA/4K6M9yrfSFrmEP93M7UkToYBziZGlTxqZhPN7Phkew9iiFbm/9u/seC5QLVc8kpWFlMEfg8MB3D3F4HJxIWHTOsmOW8Jd691eKCZLWNmIyyGzf4I3MyCeQWyn8PUZwXgw1q21/n564lpOeDTpJFarb4cnE0uuaYhnz3bOV1JU4Op9NT8cpyekQiWcPe27n5r8lx3y2Hytbtf6O79iSFpqwDHAt8QjYU+Gfvu6DFZvDafEV+6at2JITpf1v7yBY7/vrsPIk4izgJuT8bGfkIM68v8fO3c/cxafhe17rq+YzdQXb9vkXKQ7TvzDXGiVPM7/mkO7632OfFHOPP9tQeRPSfsA+wMbEUMme2ZvMUy3j7vGBYVAJci8lND1PZZbiCuFG8JTE9OzurzCXGltnNGzujg7n0A3H0u0RAbRHy2+5Pe/Or3Kt9IWiYz//tVbUWSk/ukR+Qv7r4SMW/oGDPbkvh/+1GN/7ft3b22kSG55JW67EoMp7/UYl7jF0RjY0iO7890BvG97+vuHYgRLlb3W+apL/d9Aqxcy/b6Pn9dMX0OLJ+MBqqWmV+nERe9ATCzrFUGWbRcs9BnryN/lzQ1mErbVcAhydVJM7N2ZraDmbUnumY/B85Mtrc2s41q7sDMBiTvb0l8wWYAc5I/5FcB59n8CcjLm9k2WWK5FTjaorzn4sQwn5H19XAl+93XzJZOjvl9snkOcTXld2a2TXJlubXF5OxuyWu+JMZHZ/M1MLee1zREXb9vkbLl7nOIE/vTzax90htyDPEdzdX/gBPMbMnkO3x4thfWkRPaEw2QqcTJwL9refv2FhOsWwGnEXOPGnrldaHckjSQ5hJDZnLpXcLdPwceBf5rZh0sJrOvbGaZQ31uIYblDGb+cDxQvpF0jQT+bmbdbH4Rht8Bt8O8IgG9khP2H4nv5xzi3ONHM/s/i0Ivzc1sTTMbUPMATZBX9ifmAa5F9M72AzYC+pnZWg38vO2Bn4kiUcsTF45z9SXQyRYcGpxpOLCVme1pZi3MrJOZ9cvh89cV04vE7/uwZJ87E1Mxqr0O9DGzfmbWmloK8WRYlFyz0GevI3+XNDWYSpi7jyHGnl5MlNT8gJjoV52IfkdMGpwMTCH+KNfUgfiyfEdcOZoKnJM893/JPl9KuoMfB1atZR8QSesmYlLiR0TDK+sJUQ3bAuPN7GdikvbeHnOuPiGuJv+NaPx8QiSM6v+3FwB7WFTdWmhcsrtPB04Hnk+6mRdp7H9dv2+RCnA4cVFlIjH/6Rbie5+rU4kc8xHRiKir0VFrTiAmSH9MXIGdANQ2Nv4W4GRiKF5/oiHSUGcQJ4vfm9lfM7bfSJycNaShOIQYdjOByBu3kzGs2N1fJn6vyxFzJqu3K99Imv4JvEB8178D/gMMdve3kud7E+cEPxMn75e6+6iMc49+xHf9G+Bqoke4No3KK0kDYkuiCMIXGbexxPSB/Rv4eU8lih/8ADxAFK7Kibu/Q1w0npjkjOVqPD+ZmHv9FyIvjWP+HO66Pn/WmDzmT+5GDH/7nuh9up+4oIS7v0f8Gz5OVD2tbQ579b4anWuyfPZs+buk2YLDH0VERKQ2ZjYEGObuG6cdi4hIJjN7Gbjc3a9LO5ZypB4mERGRephZW+BQ4Mq0YxERMbPNzKxrMiRvf6Av0bsmeaAGk4iISB2SuZtfE+P1b6nn5SIihbAqMVfpB2K43x7JvEnJAw3JExERERERyUI9TCIiIiIiIlnUu0ZPsencubP37Nkz7TBEKsrYsWO/cfdsixaXJeUakcKqxDwDyjUihdaYXFNyDaaePXsyZsyYtMMQqShm9nH9ryovyjUihVWJeQaUa0QKrTG5RkPyREREREREslCDSUREREREJIu8NpjMbFsze9fMPjCz47O8ZnMzG2dm483s6XzGIyLlSblGRPJNeUakcuVtDpOZNQcuAX4LTAFGm9m97j4h4zVLAJcC27r7ZDNbJl/xSPmYNWsWU6ZMYcaMGWmHUnZat25Nt27daNmyZdqh5Ey5RvJBeSZ/lGdE5lOuyZ+mzDX5LPowEPjA3ScCmNkIYGdgQsZr9gHudPfJAO7+VR7jkTIxZcoU2rdvT8+ePTGztMMpG+7O1KlTmTJlCiuuuGLa4TSEco00OeWZ/FCeEVmQck1+NHWuyeeQvOWBTzIeT0m2ZVoFWNLMRpnZWDMbksd4pEzMmDGDTp06KbE0MTOjU6dOpXiVS7lGmpzyTH4oz4gsSLkmP5o61+Szh6m2f3mv5fj9gS2BNsCLZvaSu7+3wI7MhgHDALp3756HUKXUKLHkR4n+XpVrJC9K9PtQ9Er099pkeQaUa2RBJfqdKHpN+XvNZw/TFGCFjMfdgM9qec3D7j7N3b8BngHWrrkjd7/S3avcvWrppStuTTsRqZtyjYjkW5PlGVCuESk1+WwwjQZ6m9mKZtYK2Bu4t8Zr7gE2MbMWZtYWWA94O48xiSySqVOn0q9fP/r160fXrl1Zfvnl5z2eOXNmg/d3zz330LdvX/r160dVVRXPPffcvOcefvhhVl11VXr16sWZZ57ZlB+j3CjXSNlRrik6yjNSlpRrcuTuebsB2wPvAR8CJybbDgEOyXjNscSkybeAo+rbZ//+/V0q24QJExr0+ptvdu/Rw90sft58c9PEcfLJJ/vZZ5+9SPv46aeffO7cue7u/vrrr/uqq67q7u6zZ8/2lVZayT/88EP/9ddfvW/fvj5+/PhFjjkXtf1+gTGex1yxqDflGmlqxZJn3Msz1yjPKNdIUK7Jr6bKNXldh8ndH3T3Vdx9ZXc/Pdl2ubtfnvGas919DXdf093Pz2c8UnmGD4dhw+Djj8E9fg4bFtubyhNPPME666zDWmutxYEHHsivv/4KQM+ePfm///s/Bg4cyMCBA/nggw8Weu/iiy8+b4zttGnT5t1/5ZVX6NWrFyuttBKtWrVi77335p577mm6oMuMco2kqRB5BpRr0qY8I2lTrklPPos+iOTdUUfBuHHZn3/pJUi+5/NMnw4HHQRXXVX7e/r1g/PPz+34M2bMYOjQoTzxxBOsssoqDBkyhMsuu4yjjjoKgA4dOvDKK69w4403ctRRR3H//fcvtI+77rqLE044ga+++ooHHngAgE8//ZQVVpg/XL5bt268/PLLuQUlIk0q7TwDyjUilUC5pnjltYdJJG01E0t92xtqzpw5rLjiiqyyyioA7L///jzzzDPznh80aNC8ny+++GKt+9h111155513uPvuuznppJMAqod2LEBVdESKU77zDCjXiIhyTZrUwyQlrb6rJj17Rpd1TT16wKhRi378du3a1fl8ZjKoLzFsuummfPjhh3zzzTd069aNTz6Zv+THlClTWG655RYtWBFplLTzDCjXiFQC5ZripR4mKWunnw5t2y64rW3b2N4UZsyYwaRJk+aN473pppvYbLPN5j0/cuTIeT832GCDhd7/wQcfzLvq8uqrrzJz5kw6derEgAEDeP/99/noo4+YOXMmI0aMYKeddmqaoEWkSeU7z4ByjYgo16RJPUxS1gYPjp8nngiTJ0P37pFYqrcvqtatW3Pdddfx+9//ntmzZzNgwAAOOeSQec//+uuvrLfeesydO5dbb711offfcccd3HjjjbRs2ZI2bdowcuRIzIwWLVpw8cUXs8022zBnzhwOPPBA+vTp0zRBi0iTyneeAeUaEVGuSZPVNqawmFVVVfmYMWPSDkNS9Pbbb7P66qunHUa9evbsyZgxY+jcuXPaoTRIbb9fMxvr7lUphZQK5ZrKVip5Bkoz1yjPzKdcU9mUa/KrqXKNhuSJiIiIiIhkoSF5InkyadKktEMQkQqgXCMihVDJuUY9TCIiIiIiIlmowSQiIiIiIpKFGkwiIiIiIiJZqMEkIiIiIiKShRpMIo3QvHlz+vXrx9prr826667LCy+8UOfrJ02axC233DLv8bhx43jwwQfzEttJJ51E37596devH1tvvTWfffbZvOfOOOMMevXqxaqrrsojjzySl+OLSNNQnhGRQlCuqZ8aTFLeunYFs4VvXbsu0m7btGnDuHHjeP311znjjDM44YQT6nx9IZPLscceyxtvvMG4cePYcccd+ec//wnAhAkTGDFiBOPHj+fhhx/m0EMPZc6cOXmJQaSiKM8oz4gUgnJNarlGDSYpb19+2bDtjfDjjz+y5JJLAuDuHHvssay55pqstdZajBw5EoDjjz+eZ599ln79+nHWWWfxj3/8g5EjR9KvXz9GjhzJt99+yy677ELfvn1Zf/31eeONNwA45ZRT2H///dl6663p2bMnd955J8cddxxrrbUW2267LbNmzVoong4dOsy7P23aNMwMgHvuuYe9996bxRZbjBVXXJFevXrxyiuvNNnvQaRiKc8oz4gUgnJNarlG6zBJ6dt884W37bknHHpo/e/95hvYY48Ft40aVe/bfvnlF/r168eMGTP4/PPPefLJJwG48847512l+eabbxgwYACbbropZ555Jueccw73338/AF26dGHMmDFcfPHFABx++OGss8463H333Tz55JMMGTKEcePGAfDhhx/y1FNPMWHCBDbYYAPuuOMO/vOf/7DrrrvywAMPsMsuuywU34knnsiNN95Ix44deeqppwD49NNPWX/99ee9plu3bnz66af1/45ERHlGeUakMJRrFoqvGHKNephEGqG6+/qdd97h4YcfZsiQIbg7zz33HIMGDaJ58+Z06dKFzTbbjNGjR9e7v+eee4799tsPgN/85jdMnTqVH374AYDtttuOli1bstZaazFnzhy23XZbANZaa62si8idfvrpfPLJJwwePHheAnP3hV5XfaVGRIqP8oyIFIJyTf3UwySlL4erJ1l17rxo7wc22GADvvnmG77++utav8C5qOuLv9hiiwHQrFkzWrZsOW97s2bNmD17dp373Weffdhhhx049dRT6datG5988sm856ZMmcJyyy3XqHhFKo7yTFbKMyJNSLkmqzRzjXqYRBbRO++8w5w5c+jUqRObbropI0eOZM6cOXz99dc888wzDBw4kPbt2/PTTz/Ne0/Nx5tuuinDhw8HYNSoUXTu3HmBcbsN8f7778+7f++997LaaqsBsNNOOzFixAh+/fVXPvroI95//30GDhzYqGOISGEpz4hIISjX1E49TFLeunSpfTJkly6LtNvq8b4QV1JuuOEGmjdvzq677sqLL77I2muvjZnxn//8h65du9KpUydatGjB2muvzdChQ9l///0588wz6devHyeccAKnnHIKBxxwAH379qVt27bccMMNjY7t+OOP591336VZs2b06NGDyy+/HIA+ffqw5557ssYaa9CiRQsuueQSmjdvvki/BxFBeUZ5RqQwlGtSyzXW2O62tFRVVfmYMWPSDkNS9Pbbb7P66qunHUbZqu33a2Zj3b0qpZBSoVxT2ZRn8kt5Zj7lmsqmXJNfTZVrGjQkz8yamVnj+tRERHKkXCMihaBcIyK5qLfBZGa3mFkHM2sHTADeNbNj8x+aiFQS5RoRKQTlGhFpqFx6mNZw9x+BXYAHge7AfvkMSqQ+pTaUtFSk/HtVrpGiojyTH0Xwe1WukaJSBN+JstSUv9dcGkwtzawlkVjucfdZgP5lJTWtW7dm6tSpSjBNzN2ZOnUqrVu3TisE5RopGsoz+VEEeQaUa6SIKNfkR1Pnmlyq5F0BTAJeB54xsx7Aj01ydJFG6NatG1OmTOHrr79OO5Sy07p1a7p165bW4ZVrpGgoz+RPynkGlGukiCjX5E9T5pp6G0zufiFwYcamj81siyY5ukgjtGzZkhVXXDHtMKSJKddIMVGeKV/KNVJMlGtKQ9YGk5nt6+43m9kxWV5ybp5iEpEKolwjIoWgXCMijVVXD1O75Gf7QgQiIhVLuUZECkG5RkQaJWuDyd2vSH6e2tidm9m2wAVAc+Bqdz+zxvObA/cAHyWb7nT3fzb2eCJSepRrRKQQFjXXKM+IVK5c1mH6T7JeQUsze8LMvjGzfXN4X3PgEmA7YA1gkJmtUctLn3X3fslNiUWkQinXiEghNCbXKM+IVLZcyopvnaxXsCMwBVgFyGWBt4HAB+4+0d1nAiOAnRsdqYiUO+UaESmExuQa5RmRCpbTOkzJz+2BW9392xz3vTzwScbjKcm2mjYws9fN7CEz61PbjsxsmJmNMbMxKrsoUraUa0SkEBqTa5osz4ByjUipyaXBdJ+ZvQNUAU+Y2dLAjBzeZ7Vsq7kq16tAD3dfG7gIuLu2Hbn7le5e5e5VSy+9dA6HFpESpFwjIoXQmFzTZHkGlGtESk29DSZ3Px7YAKhKVsOeTm7d0FOAFTIedwM+q7HvH9395+T+g8Tq251zjF1EyohyjYgUQiNzjfKMSAXLpejDGGAQ0AHA3ae5+xc57Hs00NvMVjSzVsDewL019t3VzCy5PzCJZ2rDPoKIlAPlGhEphEbmGuUZkQqWy5C8vYlxuqPNbISZbVOdEOri7rOBw4BHgLeB/7n7eDM7xMwOSV62B/CWmb1OrLq9t7vX7OIWkcqgXCMihdDgXKM8I1LZLNfvspk1IyrKXAbMBa4FLmjAxOwmUVVV5WPGjCnkIUUqnpmNdfeqAh1LuUakAhUyzyTHU64RqUCNyTW59DBhZn2B/wJnA3cQV1F+BJ5saJAiItko14hIISjXiEhDtKjvBWY2FvgeuAY43t1/TZ562cw2ymNsIlJBlGtEpBCUa0SkoeptMAG/d/eJtT3h7rs1cTwiUrmUa0SkEJRrRKRBsjaYzOyYjPsLPe/u5+YpJpGSMXw4nHgiTJ4M3bvD6afD4MFpR1ValGtEpBCUa0SkserqYWpfsChEStDw4TBsGEyfHo8//jgegxpNDaRcIyKFoFwjIo2StcHk7qcWMhCRUnPiifMbS9WmT4/tajDlTrlGRApBuUZEGiuXhWu7mdldZvaVmX1pZneYWbdCBCdSzCZPbth2qZtyjYgUgnKNiDRULmXFryNWs16OWOjtvmSbSMVyhw4dan+ue/fCxlJGlGtEpBCUa0SkQXJpMC3t7te5++zkdj2wdJ7jEila06fD3nvDDz9A8+YLPte2bRR+kEZRrhGRQlCuEZEGyaXB9I2Z7WtmzZPbvsDUfAcmUow+/RQ22wxuuw3OOgtuuAF69ACz+HnllZq/tAiUa0SkEJRrRKRBclmH6UDgYuC85PHzyTaRijJmDOy8M/z4I9x9N+y0U2xXA6nJKNeISCEo14hIg9TbYHL3ycBOBYhFpGiNHAlDh0KXLvD889C3b9oRlR/lGhEpBOUaEWmoXKrkrWRm95nZ10lFmXvMbKVCBCeStrlz4ZRTYs5S//7wyitqLOWLco2IFIJyjYg0VC5zmG4B/gcsS1SUuQ24NZ9BiRSD6uIOp54avUtPPAHLLJN2VGVNuUZECkG5RkQaJJcGk7n7TRnVZG4GPN+BiaTp009h003h9tvh7LPh2mthscXSjqrsKdeISCEo14hIg2Sdw2RmSyV3nzKz44ERRELZC3igALGJpGL06Cju8NNPcO+9sOOOaUdU3pRrRKQQlGtEpLHqKvowlkgkljz+Y8ZzDpyWr6BE0jJiBBxwAHTtCo88AmutlXZEFUG5RkQKQblGRBola4PJ3VcsZCAiaaou7nDaabDJJnDHHbC0ljEsCOUaESkE5RoRaax6y4qbWXNgB6Bn5uvd/dz8hSVSONOmwf77RyPpgAPg8suhVau0o6o8yjUiUgjKNSLSULksXHsfMAN4E5ib33BECmvKlFiAdtw4OOccOOYYMKv3bZIfyjUiUgjKNSLSILk0mLq5u1aekbLz8suwyy7Rw3TffbDDDmlHVPGUa0SkEJRrRKRBcikr/pCZbZ33SEQK6JZbYLPNoE0bePFFNZaKhHKNiBSCco2INEguPUwvAXeZWTNgFlFdxt29Q14jE8mDuXPhH/+A00+PdZbuuAM6d047Kkko14hIISjXiEiD5NJg+i+wAfCmu2thNylZ06bBkCFw551w0EFw6aUq7lBklGtEpBCUa0SkQXIZkvc+8JaSipSyTz6BjTeGu++Gc8+Fq65SY6kIlVSuGT4cevaEZs3i5/DhaUckIjkqqVwjIunLpYfpc2CUmT0E/Fq9UeU3pVS89FIUd/jlF7j/fthuu7QjkixKJtcMHw7DhsH06fH444/jMcDgwenFJSI5KZlcIyLFIZcepo+AJ4BWQPuMm0jRGz4cNt8c2rWL4g5qLBW1ksk1J544v7FUbfr02C4iRa9kco2IFId6e5jc/VQAM2sfD/3nvEclsojmzoWTToJ//zuq4d1+u4o7FLtSyjWTJzdsu4gUj1LKNSJSHOrtYTKzNc3sNeAtYLyZjTWzPrns3My2NbN3zewDMzu+jtcNMLM5ZrZH7qGL1O7nn2GPPaKxdPDB8OijaiyVglLKNd271759mWUWZa8iUgiNzTU6pxGpXLkMybsSOMbde7h7D+AvwFX1vcnMmgOXANsBawCDzGyNLK87C3ikIYGL1Gby5CjucM89cP75cMUVKu5QQkom15x+OrRtW3P/MHVqLIIsIkWtwblG5zQilS2XBlM7d3+q+oG7jwLa5fC+gcAH7j7R3WcCI4Cda3nd4cAdwFc57FMkqxdfhAED4KOP4IEH4Mgj4yRWSkbJ5JrBg+HKK6FHj/g/1qNHlKlfZx3YdVe4+eZFPYKI5FFjco3OaUQqWC4NpolmdpKZ9UxufycmTNZneeCTjMdTkm3zmNnywK7A5bkGLFKbm26K4g7t20dVvG23TTsiaYSSyjWDB8OkSTFfbtIkOOQQeOKJmDO3335w0UVNdSQRaWKNyTU6pxGpYLk0mA4ElgbuTG6dgQNyeF9t1/ZrrnlwPvB/7j6nzh2ZDTOzMWY25uuvv87h0FIp5s6FE06IBWk33BBefhlWXz3tqKSRSj7XtG8fvZu77AJHHAGnngpa6UWk6DQm1zRZngGd14iUmjqr5CVjcW9z960ase8pwAoZj7sBn9V4TRUwwmLcVGdgezOb7e53Z77I3a8kxhxTVVWl0w8BorjDvvvGfKVhw+Dii6Fly7SjksYop1zTujXcdlsUHDnlFPj2WzjvvFjgVkTStQi5psnyDOi8RqTU1Nlgcvc5ZjbdzDq6+w8N3PdooLeZrQh8CuwN7FNj/ytW3zez64H7a0ssIjV9/DHstBO89RZccAEcfrjmK5Wycss1LVrANdfAkktGY+m77+KxGvQi6VqEXFN0eUZECqfedZiAGcCbZvYYMK16o7sfUdeb3H22mR1GVIppDlzr7uPN7JDkeY3xlUZ54YWYWP/rr/DQQ7D11mlHJE2krHJNs2bw3/9Cp07w97/D99/DyJHQpk0a0YhIhgbnmmLNMyJSGLk0mB5Ibg3m7g8CD9bYVmtScfehjTmGVJYbb4yhTt27R/nm1VZLOyJpQmWXa8zgxBOjp+mww2C77eDee6FDh0JFICK1aFSuKdY8IyL5V2+Dyd1vKEQgInWZMwf+9jf4z3/gN7+JOSJLLZV2VNKUyjnXHHpoNJqGDIEttoCHH4all047KpHKVM65plgMHx4XiyZPjgucp58elUVFSlW9DSYz2wg4BeiRvN4Ad/eV8huaSPjpp0i0990XpZsvvFBzQcpRueeaQYOgY0fYfXfYZBN47DFYYYX63yciTavcc03ahg+PQkzTp8fjjz+Ox6BGk5SuXIbkXQMcDYwF6i2VKdKUJk2K4g4TJkQVvD//Oe2IJI/KPtdsv300lHbcETbaKO6vumraUYlUnLLPNWk68cT5jaVq06fHdjWYpFTl0mD6wd0fynskIjU89xzsthvMnBnFHX7727QjkjyriFyz8cYwahRss03cf+QRWHfdtKMSqSgVkWvSMnlyw7aLlIKsK4OY2bpmti7wlJmdbWYbVG9LtovkzfXXx1ylJZaIxWjVWCpflZhr+vWLCwLt2sHmm8PTT6cdkUj5q8Rck4bu3Wvf3qZNrJ8oUorq6mH6b43HVRn3HfhN04cjlW7OHDj+eDjnHNhyS/jf/1TcoQJUZK7p3TsaTVtvDdtuG//Xf/e7tKMSKWsVmWsK7fTTF5zDBDHvePp0GDgQ7rgDVl89vfhEGiNrg8ndtwAws5XcfWLmc2amiZHS5H78McY3339/VBU7/3wVd6gElZxrunWDZ56JuU277ho9q/vum3ZUIuWpknNNIVXPU6pZJW/ZZaP4zYABcNVVcV+kVGQdkpfh9lq23dbUgUhl++ijmAT/0ENwySVxU2Op4lRkruncGZ54AjbbDPbbL6pAikheVWSuKaTBg6No09y58XPw4Bhm/9prsM46sM8+sTbdr7+mHalIbrL2MJnZakAfoKOZ7ZbxVAegdb4Dk8rx7LNR3GH27FifZqut0o5ICkm5Btq3hwceiCuuRx4J330H//hHLHwrIk1DuSZ9yy0HTz4JJ5wA//0vjB4dw5F79Eg7MpG61TWHaVVgR2AJIHNk/U/AwXmMSSrIddfBH/8IK64Y6yytskraEUkKlGuA1q1jQeaDD4ZTToFvv4XzzoNmuYwDEJFcKNcUgZYtY57yhhvCAQdEldDhw2Mup0ixqmsO0z3APWa2gbu/WMCYpALMmQPHHQfnnhs9Sv/7Hyy5ZNpRSRqUa+Zr0QKuuSa+C+edF42ma6/V8FSRpqBcU1x22w3WWgv22CPmcf7973DyydC8edqRiSys3muXSirS1H78MRajPffcGMP80ENqLIlyTbVmzWKoyr/+BTffDLvvDr/8knZUIuVDuaZ49O4NL70EQ4fCaafBdtvB11+nHZXIwjTYQwpq4sTohn/kEbjsMrjooriqLiLzmUWFqUsuiaqR220XFxpERMpNmzbRk37NNTGneZ114IUX0o5KZEFqMEnBPP10rMHw2Wfw6KNwyCFpRyRS3A49NMb2P/88bLGFrryKSPk68EB48UVYbLGoGnr++eCedlQiod5r+2Z2TC2bfwDGuvu4Jo9IytI110QDaeWVo7hD795pRyTFRrmmdoMGQceOMTRvk03iYkP37mlHJVK6lGuKV79+MHZsDNE7+ujoabr6aujQIe3IpNLl0sNUBRwCLJ/chgGbA1eZ2XH5C03KwZw5cMwx8Ic/xBoML72kxpJkpVyTxfbbR0Pp889jvbJ33kk7IpGSplxTxJZYAu66C/7zH7jzzljo9s03045KKl0uDaZOwLru/hd3/wuRaJYGNgWG5jE2KXE//AC/+11U+zriiFhnZokl0o5KiphyTR022QRGjYKZM+P+2LFpRyRSspRripwZHHtsrNn044+w3npw001pRyWVLJcGU3dgZsbjWUAPd/8F0BrNUqsPP4QNNoDHHoPLL4cLLlBxB6mXck091lkHnnsO2rWLOU1PP512RCIlSbmmRGy6Kbz2Wsx/HjIkhvbPmJF2VFKJcjmFvQV4yczuSR7/DrjVzNoBE/IWmZSsUaNivoV7DCPaYou0I5ISoVyTg969o9G09dawzTaxhtlOO6UdlUhJUa4pIV27wuOPw0knwZlnwujRcPvtseC9SKHksg7TacT43u+JSZGHuPs/3X2auw/Oc3xSYq66Cn77W1hmGXjlFTWWJHfKNbnr1g2eeSYWfdxtNw1VEWkI5ZrS06IFnHEG3HNPjGBZd91YckGkUHItK/4acBtwJ/CVmalGkyxg9mw46igYNgy23DKKO/TqlXZUUoKUa3LUuXOM799ssxiqcuGFaUckUlKUa0rQTjvBq6/CSivFHOm//S3OP0TyLZey4ocDJwNfAnMAAxzom9/QpFT88APstVcsRnvkkXDOOZqvJA2nXNNw7dtHMZVBg+K79+23cPLJMWFaRGqnXFPaVlop1qY74ojodXrpJbj1VujSJe3IpJzlclp7JLCqu0/NdzBSej74IK7yfPABXHklHHxw2hFJCVOuaYTWreG22+K7d+qp0Wg6/3xopmXJRbJRrilxrVvHOcdGG8Gf/hQFcUaOjAqiIvmQy5/UT4gxviILeOqpKPX51VdRDU+NJVlEyjWN1KJFLA599NFw0UWw//4wa1baUYkULeWaMrH//tHDtPjiMWf6nHOi4JRIU8ulh2kiMMrMHiCj3Ka7n5u3qKToXXEFHHZYVOy67z5YeeW0I5IyoFyzCJo1g//+Fzp1gr//HcaPh2++gSlToHt3OP10GKzp7CKgXFNW+vaFMWPgwANj7abnn4frr4eOHdOOTMpJLg2mycmtVXKTCjZ7NhxzTFzF3m67GDespCRNRLlmEZnBiSfC++/DDTfM3/7xx1GQBdRoEkG5pux06BBDk88/H447Dvr3j9Lj/fqlHZmUi3obTO5+aiECkeL3/fdR3OHRR2Poz9lnQ/PmaUcl5UK5pumMGrXwtunT4+rrnntCy5YFD0mkaCjXlCezODcZODDy3AYbwCWXRM+TyKLK2mAys/Pd/Sgzu4+oHrMAd9dSiRXk/fejuMPEiXD11XDQQWlHJOVCuabpTZ5c+/bPP4+x/muuGVde11knfq69dlTcEylnyjWVYaON4LXXYJ994lzl+efh4ouhTZu0I5NSVlcPU/VSiOcUIhApXk8+CXvsEXMkHn8cNt007YikzCjXNLHu3WMYXk2dO8PQoTBuXCwAee2185/r1WvBRtQ660DXripRLmVFuaZCLLNMLHVyyinwr3/B2LExRE/rQ0pjZa2S5+5jk7tLAS+5+9OZt1x2bmbbmtm7ZvaBmR1fy/M7m9kbZjbOzMaY2caN+xiSL5dfDltvDcsuC6+8osaSND3lmqZ3+unQtu2C29q2jfH9Z58dVS2//ho++SSKtpx2WkycfvXVmAO1ww6w3HLRYNpmGzj+eBgxAt59F+bMSeUjpWL4cOjZMy4W9ewZj6V0LWquUZ4pLc2bR2574IHode/fH+6+O+2opGS5e5034DrgY+LKzA5Ai/rek7yvOfAhsBIxqfJ1YI0ar1kcsOR+X+Cd+vbbv39/l/ybNcv9sMPcwX377d1/+CHtiIpQly7xC6p569Il7ciaHDDGc/jeL8pNuaZp3Xyze48e7mbx8+abc3vf99+7P/20+wUXuB9wgHu/fu4tW87/7922rfv667v/6U/uV1zh/vLL7tOn5/OTpOPmm+OzZn6127bN/fcoDVeIPOONzDX5yjNeBrmmFEya5F5VFd/jv/41znGkcjUm1+RS9OEAM2sJbAfsA1xqZo+5+x/qeetA4AN3nwhgZiOAnYEJGfv+OeP17ahlTLEU3nffxYTJxx+Hv/wFzjpLxR1q9eWXDdsudVKuaVqDBzeuIl7HjtGTnNmbPHMmvP12zAsYNy5+Dh8Ol10WzzdrBqutNn84X/WQvk6dmuCDFIA7/PIL/PAD/Phj3I45JgplZJo+PXrgVGmwtDUy1yjPlLAePeC55+J7fc458PLLsdDtssumHZmUilzKiuPus8zsIeLL34ZIEvWdxCxPLA5XbQqwXs0XmdmuwBnAMsSVHknRe+9FcYePPoqFMFVdRgpJuaY4tWoVhSHWXnv+NneYNGl+I2rcOHj66QWHrXXrtnAjqmfP+fOihg+PBsjkyY1bK8o9GjHVjZzMBk/mrbbtNbflOtQwW0ENKS2NyDXKMyVuscWiat5GG8HBB0c+GjECNt887cikFNTbYDKzbYG9gS2AUcDVwJ457Lu2qcK1VaW5C7jLzDYFTgO2qiWGYcAwgO7du+dwaGmMxx+H3/8eWrSAJ56ATTZJOyKpJMo1pcUMVlwxbrvtNn/7N9/A668v2JB64AGYOzee79gxGk+tW8NTT0XvFUSRioMOikZXnz65N3iq91uXNm1inZaOHeNnhw6x2Hb1/czt1bc//KH2zmL9tyh9jcw1TZZnkhiUa1Kyzz5x8Wf33WHLLeNCzXHHRU+5SDa59DANBUYAf3T3X+t5baYpwAoZj7sBn2V7sbs/Y2Yrm1lnd/+mxnNXAlcCVFVVqYs7Dy69FI44IobV3HdfnASJFNhQlGtKXufOcRKy5Zbzt/3yC7z11vzhfOPGwTPPRA9Rpl9/hauumv+4bduFGzXLLFN3Q6fm9vbtG7fu1H//G4v9Zg7LM4s8KSVvKA3PNU2WZ5LnlWtS1KcPjB4dPU0nnBClx2+8EZZcMu3IpFjlModp70buezTQ28xWBD4lrubsk/kCM+sFfOjubmbrEhMppzbyeNIIs2bBUUdFg2nHHWOITIcOaUdV5B5/PBajkialXFO+2rSBAQPiVi3b1VwzmDo1Gjotcho0nh/VQwOrhwx27Ro9WuedBzvvHD1UUpoamWuUZ8pM+/Zw662w8cYxt6l//yg9vu66aUcmxShrB6SZPZf8/MnMfqz5s74du/ts4DDgEeBt4H/uPt7MDjGzQ5KX7Q68ZWbjgEuAvZLqFVIA330H220XjaVjj41ym2os1eOqq2DbbWH8eFh66dpf06VLYWMqcco1lSnbKKTu3eMqb5qNpWqDB8c8rblz4bPP4IUXords883hww/Tjk4aalFyjfJMeTKDww6LHu/Zs2HDDeHKKxfu/RaxUvsuV1VV+ZgxY9IOo+S9+24Ud5g0KZLD0KFpR1Tk5syB//u/GKez7bZRXqeCWpdmNtbdq9KOo5CUa/Jr+PCFh7y1bRv5qJir0L3+egw3bNMGRo1ST1NTqsQ8A8o1xeKbbyL3PPoo7LdfrENZcz07KQ+NyTU5TXEzs43N7IDkfuekS1pK1GOPwfrrRw/Tk0+qsZSTQw+NxtJhh8UkrwpqLBWSck3lGDw4Gkc9esRV3h49ir+xBDFZ/Iknoqdpiy3U01SqlGukps6d4cEH4ZRT4OabYb31onKwCOTQYDKzk4H/A05INrUCbs5nUJIf7nDxxTEMr1u3mPC4sdYhz82wYfHLu+ii4hgrVIaUaypP5pC3SZOKv7FUrbrRNG1aNJomTkw7ImkI5RrJpnlzOPlkeOgh+PxzqKqKeU0iufQw7QrsBEwDcPfPgPb5DEqa3qxZ0Uly+OGw/fYxFr9nz7SjKnKvvhr1RiFmg/75z+nGU/6Ua6RkrL129NBPmxZzmtRoKinKNVKnbbaJip59+sRyK0cfHedRUrlyaTDNTCYtOoCZtctvSNLUvv02pt1cfnmsNXDXXVEdRupw992xENWVV8bYRSkE5RopKZk9TWo0lRTlGqnXCivEunBHHAHnnx/f8SlT0o5K0pJLg+l/ZnYFsISZHQw8DlxVz3ukSLzzTozDfe45uP56OOus6HKWLNzhnHNiJc4114SXX9bCDIWjXCMlp18/Dc8rQco1kpNWreCCC2DECHjjDVhnnVhZRCpPvQ0mdz8HuB24A1gV+Ie7X5TvwGTRPfpoFHf44Qd46inYf/+0IyoBRxwRNdb32CNKYHXtmnZEFaOkck3XrlGpoOZN/18qUr9+cRL188/RaProo7QjkrqUVK6RorDXXjHvu0sX2HprOO20mHsplaPe2etJ5Zhn3f2x5HEbM+vp7pPyHZw0jnvUJjj66OgkuffeqEAlOdhoI+jYEf75z+wra0pelFSu+fLLhm2Xsld95XnLLWPozqhRsKLqrhWlkso1UjRWWy0Gnfzxj/CPf8CLL8JNN0GnTmlHJoWQyxnhbUBmO3pOsk2K0KxZcMghcOSRsc7S88+rsVSvDz+MiV0Ae+8N//qXGkvpUK6RkrbOOjE876efotGknqaipVwjjdKuXTSSLrssvuvrrguvvJJ2VFIIuZwVtnD3mdUPkvut8heSNNbUqdFVfOWVcPzxcOedsPjiaUdV5J59NiZ5/fnPC66gKWlQrpGSl9lo2mKLKJcuRUe5RhrNLC5MP/983N94Y7j00hjdI+UrlwbT12a2U/UDM9sZ+CZ/IUljvP12nPe/8ALceCOccYY6Sep1002w1VbRn/7MM1rSO33lkWtefz3tCCRl1cPzfvwxeprUaCo65ZFrJFVVVbH6yG9/G9dc99035jFKecrllPoQ4G9m9omZTSYWe/tjfsOShnj44Sju8NNPMW5+v/3SjqjIuccA5CFD4tLQSy9Br15pRyXlkmvWXRc++STtKCRl666rRlMRK49cI6lbaim4775YsnHECBg4MC5gS/nJpUreh+6+PrA60MfdN3T3D/IfmtTHPcpd7rBDTC4ePRo22CDtqEqAGcyeDQcdFK1NlQ0vCiWVa7p0qX37MsvALbfEAh4AV10FH39cuLikqKjRVJxKKtdI0WvWDP72t6hM/M03MGBANJ6kvNTbYDKzLmZ2DXCbu/9kZmuY2UEFiE3qMHNmVGo56ijYaadYZ6l797SjKnJffhlLd0NcDrrqKmjZMt2YZJ6SyjVffBFXLGrevvwy6s8CfP11VF/p3RsOOww+/zzdmCUV1Y2mH37QnKZiUVK5RkrGllvGKUa/fjBoUKT9X39NOyppKrkMybseeARYLnn8HnBUnuKRHFQXd7jqqriqcccdKu5QrzffjL7y3XePUoLV6+ZIMbmecso1Sy8N770HBx4IV1wBK68Mxx0H332XdmRSYNWNpu+/j0aTOh1Tdz3llGukaCy/fKx7ecwxcMklsOmmMHly2lFJU8ilwdTZ3f9HUoLT3WcTJTglBRMmxHn/Sy/BzTdHR4mKO9Tj4YdjfaVZs+C229SrVLzKL9d06waXXw7vvBON9csu0yXHCtW///xG0+abq9GUsvLLNVI0WraE//43Lma//XYUgXn44bSjkkWVy6n2NDPrBDiAma0P/JDXqKRWDz0Uc5SmTYviDoMHpx1RCbjkkpjktdJKsVhC//5pRyTZlW+uWXnlqMo4aRJ07RrD93bZBc4+W+XsK0j//vDYY+ppKgLlm2uKQdeu80dxZN66dk07soLabTcYOzZ6nbbfHk4+GeaoWV6ycmkwHQPcC6xsZs8DNwKH5zUqWYA7nHce7LhjnPePHh1V8aQec+fGZZ3tt49JXt26pR2R1K38c031kvA//xw9TccdF42pSy5Rz1OFqKqKRtN330WjScN1UlH+uSZNX37ZsO1lrHfvGBE0ZAj885+w3XYxvVVKT50NJjNrDmyW3DYkym72cfc3ChCbEMUdDj44xsPuvHOc91cX4JIsfvwxJtg3awYjR8Ldd2uSV5GruFzTvn10GT/zzPyiEKuuGnPtpOxVN5q+/TaG56nRVDgVl2skdW3bwnXXxbzzZ56JOY0vvph2VNJQdTaY3H0OsLO7z3b38e7+lrvPKlBsFe+bb2JBtGuugRNPhNtvh3bt0o6qyE2eHGsr7bxz9DC1bQvNm6cdldSjYnPNJpvA009HT+haa81fD2zy5Pj/K2WrqirmNKnRVFgVm2skVWbwhz9EQ6lVqygGccEFMYJISkMuQ/KeN7OLzWwTM1u3+pb3yCrc+PFR3OHll2H4cPjXv1TcoV6vvBK/tMmTVQ2jNFVmrjGDbbaJ1Q/btIniJFtsEZch779ff1HLWGZPk4bnFVRl5ppiMKuy26brrBPzmrbfPpaF2WuvGBQjxS+XM8oNgT7AP4H/Jrdz8hlUJRo+HHr2jHP8ZZaJycG//BIXn/fZJ+3oSsDtt8Nmm0WP0gsvRNeclBrlGoge0dNOi3lOv/sdbLghPPlk2lFJngwYEAteTp0ajaZPPkk7ooqgXJOWgQMrvtDNEkvETIGzzopKegMGwFtvpR2V1KdFfS9w9y0KEUglGz4chg2bn0O+/jouOv/tb7DeeunGVhJmzYJTTokr8nffHevfSMlRrkk0axZXSX7/e7j++pgpvOWWMX5ryy3Tjk7yYODAaDT99rcxPG/UKM1VzSflmjzr0qX2Ag9LLBG96W3bxuPZs6FFvaehZcksav6st170Mq23XizXt+++aUcm2WjMUhE48cSFL7i4Rx1/qcOvv0Y3XMuWcbbxxBNqLEn5aNkyKr68/37MGN4iOce77TYYNy7V0KTpDRwYw/O++SYaTeppkpL1xRdxElPz9t13cOaZ8ZrXXotCNw8+mG6sKdtss/hVVFXBfvvBIYfAjBlpRyW1UYOpCGQbt67x7HWYOjUuxx5wQCTi5ZaD1q3Tjkqk6bVuDUOHRs/T7NlxWXKddeKy5Lvvph2dNKHMRpOG50lZmzs3ctsOO8CgQRVZcrzassvG9d7jjotepo03ho8+SjsqqUkNpiLQvXvDtle8d9+NhaheeSWq4ZmlHZFIYbRoEZcjTzwRHngA1lgjLhro6krZqB6e9/XX0WiaMiXtiETyoH9/ePVVOPVUuPNOWH11uPHGtKNKTYsWMafp7rvhgw/i1/PAA2lHJZlyajCZ2YZmto+ZDam+5TuwSnL66fOH9FZr2za2Sw1PPRWNpR9+iInwgwalHZE0IeWaHCyxRJTNnDgRjjwSbr011h2TsrHeevMbTZtvrkZTPijXFIHFFoN//COGGPfpEzmtwu28c1TR69EDdtwxro3Nnp12VAI5FH0ws5uAlYFxwJxksxMrY0sTGDw4fp54Ylwo7t49GkvV2yUxfXo0kJZbLsotr7hi2hFJE1KuaaBlloFzz43E0alTbDvyyDgJuf762peT79Il5hdI0VtvPXjkkZgjX10Iolu3tKMqD8o1RWb11aMk8Jzkn+LBB+H11+Gvf425nBVm5ZWj2O8RR8C//x1rN916a6RvSU8u5UmqgDXctRhIPg0erAZSVnPnxrC7tm2jj3rlleMqu5Qb5ZrGqG4suUcp8osuyr52UwXPEyhF668fjaatt47heU89pUZTE1GuKTbNms1fO/HhhyOPjRgBV10V41QrTJs28dE32gj+9KeYtjpyZKx1LunIZUjeW0DXfAciUqvp06O88hlnxOP+/dVYKl/KNYvCDK65Bt58M+1IpAmtv34Mz/vyy2g0ffpp2hGVBeWaYnbhhXDXXVHcaf31Y4XXn35KO6pUDB0KL78M7drF9/+//9Va5mnJpcHUGZhgZo+Y2b3Vt1x2bmbbmtm7ZvaBmR1fy/ODzeyN5PaCma3d0A8gZeyzz2DTTSNxtmuXdjSSf8o1TaFPn7QjkCaW2WjafHM1mppAo3KN8kwB7bILTJgAhx4aDah7c/pTUJb69oUxY2J+01//CrvvHtO4pbByGZJ3SmN2bGbNgUuA3wJTgNFmdq+7T8h42UfAZu7+nZltB1wJaKlWifHLO+4Y6zbce2/cl3J3SmPepFzTQFOnzh/GJyWjenhe5pym5ZdPO6qSdUpD36A8k4IOHeDii2HYMFhrrdj26KOw9toVN6GnY0e4/XY477woP15VFY/XVpO8YOrtYXL3p4F3gPbJ7e1kW30GAh+4+0R3nwmMAHause8X3P275OFLgEZnSzSSNt887j//vBpLFUK5pkBWWw1uuEHjOkrQBhtEo0nD8xZNI3ON8kxa+vaNIce//BKTvVdfHa69tuJymBkcc0xcLJk+PS6iXHdd2lFVjnobTGa2J/AK8HtgT+BlM9sjh30vD2Quuzcl2ZbNQcBDWWIYZmZjzGzM17VVfpLysuSSMdvxlVd0+aSCKNc0oWxXXzt1gl69YmD8b36jetUlaIMNYk78F1/ElM5u3WKufM+eMHx42tGVhkbmmibLM0kM5ZFrCqlNG3j2WVhzTTjooMhh77+fdlQFt/HGsYTVhhvCgQfCH/4QbUnJr1zmMJ0IDHD3/d19CHGV5aQc3lfbaqK1Xg4wsy2I5PJ/tT3v7le6e5W7Vy299NI5HFpKzqxZMVa5epzyHnvE8tdSSZRrmsoXX8TV15q3b76JXtvLL4+y4x06pB2pNMKGG8aV5i+/jF4md/j44xi5pEZTThqTa5osz0AZ5ZpCW2216GK58spYxLtv34q88NOlS4xOPPHEqPWz4Ybw4YdpR1XecmkwNXP3rzIeT83xfVOAFTIedwM+q/kiM+sLXA3s7O5Tc9ivlJvvv4cddoDLLosEKJVKuaYQmjWDP/4R3ngjGkwzZ8YE6yefTDsyaYDrr1942/TpcQIl9WpMrlGeKRbNmsHBB8Pbb8P558+vtV9hY1SbN481zO+/Py6Y9O8Pd9+ddlTlK5eTkYeTSjJDzWwo8ADwYA7vGw30NrMVzawVsDewQJkTM+sO3Ans5+7vNSx0KQsTJ8alkaeeijHJJ5+cdkSSHuWaQqpe82TyZHjrLdhyS9hvP/jqq7rfJ0Vh8uTs2+fOLWwsJagxuUZ5ptgsu2xc/IG42LriirF4d4WVIN9hhxii17s37LprFIWYPTvtqMpPLkUfjiUqvfQF1gaudPes3cwZ75sNHAY8ArwN/M/dx5vZIWZ2SPKyfwCdgEvNbJyZjWnk55BS9NlnsZz9F1/AY4/BAQekHZGkSLkmJb16xdpNf/97rIy42moxh1Bn3UWte/fat7vDgAExXKfC5sTnrDG5RnmmyK28coxJveiiWFrhgQfSjqigevaE556DQw6Bs8+O6V2ff552VOXFSm2h66qqKh8zRjmoLLhHf/Jee8Eqq6QdjdTBzMa6e1XacRRSReaat9+Ov7g//RRFV1rksvKEpGH48Dg/nD59/ra2bWHIkCgKMWlSVNI744y4LlUKKjHPQIXmmnx58cUYrjd+fPSY33BDlJerIDffHB1v7dvDiBHziw7LfI3JNVl7mMzsueTnT2b2Y8btJzP7cVGDlQrlDv/+dwwBMoOTTlJjqcIp1xSR1VePCdWPPBKNpW+/hVNPXfCsXIrC4MEx771Hj0ilPXrE48sug3feiQvt48dH6eFdd401QCudck0F2GCDGJ/2z39GPqtuLJVY58Ci2HdfePllWGKJGGl91lkaMNAUsjaY3H3j5Gd7d++QcWvv7iqtJA03Y0Z8k088UaWcZB7lmiJjBtVVu+67D045Jcr4PvxwqmHJwgYPjp6kuXPj5+DBsX2xxeCww6Jq1mmnRT2PtdaKUc8ff5xmxOlSrqkQrVrFxdgTTojH999fcSXI11wTRo+OgsPHHx91fb77rt63SR1yWYfpply2idTp66/jUsctt8QYkX//O+2IpMgo1xSh/fePgiytWsF228XwWQ2MLxmLLx5T0z78EI4+Gm69NTr0jz46UnKlUq6pMD//HEUh1lorzj1mzkw7ooKoHpJ3wQXw0ENRRe/VV9OOqnTlUiWvT+YDM2sB9M9POFKWPv44BtG/+ircdltc7qiwMcWSE+WaYrT55vD66zHE5Z574C9/STsiaaDOneGcc+IC+5AhcOGFsNJK0Xn4Y2UORFOuqSR77x3zM3/3uxjh0r9/zNGsAGZwxBHwzDOx3OWGG0ZNnwoaodhk6prDdIKZ/QT0zRznC3wJ3FOwCKX0LbtslG16+unoHxbJoFxTAhZbLIa4vPkm/Oc/sW3iRK2bVmJWWCFOlsaPh223jelpK68cS9nMmJF2dPmnXFPBll02Ltjec0+MTXv77bQjKqjqqV2bbhrFYoYO1dTUhqprDtMZQEfgxhrjfDu5+wmFC1FK1s03w9SpMZxn5EgYODDtiKQIKdeUkN695y8SeeKJUFUFxxwTQ16kZKy2Wpw7jh4N66wTQ/RWXRWuu668129RrhF22imqogwZEo9vuinmOFWApZeOoXknnxwfe/314T2tFpazOofkuftcYo0CkdzNmRN/gffbD847L+1opAQo15SgSy+N8r3nnQdrrBFXbqWkVFXFek2PPw5dusCBB0LfvnDXXeU7ZEe5Rlh88Rir5h5lJX/3u5if+cUXaUeWd82bx1Dchx6KpTCrquD229OOqjTkMofpJTMbkPdIpDz89FOUYzn//Bg4e8opKQckJUS5ppQsuSRcfjk8/zx07Bjf+6uvTjsqaYQtt4wyxHfcEeeQu+0WV5+feirtyPJGuUai0TRqVJSSvPvuKEN+9dXle7UgwzbbxBC9NdaA3/8+BgrMmpV2VMUtlwbTFsCLZvahmb1hZm+a2Rv5DkxK0JQpsMkmcenikkuiNIsWvpTcKdeUog03jL+8558Pe+4Z2z75pLzHdpUhs2govfkmXHNNFEP8zW9g661h7Ni0o2tyyjUSWrWKUpJvvAFrrx295hWyiHD37lEM4vDDY6DA5pvDp5+mHVXxyqXBtB2wMvAb4HfAjslPkQW1bBlXZh54AA49NO1opPQo15Sqli3hyCOhQ4e4TLnNNlHopUIqUZWTFi1iaN5778G550ZbuKoq2sLvvpt2dE1GuUYWtOqqsWDZ009H7gJ44omyL0HeqlVUzbz11iiGus46sXxVz57QrFn81LKZod4Gk7t/DCxBJJPfAUsk20TC00/HSVKXLlE1a5tt0o5ISpByTZlo0SJKkH/1VYzrOuww+OGHtKOSBmrdOqaiTpwI//gHPPgg9OkTFbamTEk7ukWjXCO1atYsyshB/MffeusoQf7SS+nGVQB77x1FYFq2hDPPjNVg3OPnsGFqNEFuC9ceCQwHlkluN5vZ4fkOTEqAO5x1VvTjVhd3aJZLp6XIwpRryoRZLB/w9tvRWLr00pgbUEbdE5WkQ4coPz5xIvz5z3D99dCrFxx7bBRBLUXKNVKvlVaKeU3ffx/Djg8/POZol7HVV4+iEDVNnx5FUSudeT2T25JxvRu4+7TkcTvgRXfvW4D4FlJVVeVjKmR8aVGbORP+9Ce49tqoLnPdddCmTdpRSZ6Y2Vh3r8rzMZRrytHo0XDxxTExpkWLyB2tWqUdlTTSpElRy+fGG6F9ezjuuBiNufjii77vQuSZ5DjKNZKbn36K1sLFF8eiZePHl3X+atas9poXZjB3buHjyZfG5JpcugMMmJPxeE6yTSrVt9/GsLtrr43FLG+5RY0laQrKNeVowAC44YZoLH37LayySvRMd+0af4Vr3rp2TTtiqUPPntHL9MYbsMUWMV++V6+o81NC0z2UayQ37dvHJJ8XXoD/+7/5jaXvv081rHzp3r1h2ytJLg2m64CXzewUMzsVeAm4Jr9hSVH75JP4a3njjTFXQcPwpGko15S7WbNg3XXh+OPhyy9rf0227VJU1lwzRiy98EIshHvYYfHz5ptjKb4ip1wjDbP++vCHP8T9e++FFVeEq64qr24X4PTToW3bBbe1bRvbK10uRR/OBQ4AvgWmAge4+/l5jkuK0Ycfxs+114aPPoqFaUWaiHJNBejSBe68M044pCxssEGs1/Tww7DEEvFnYZ114P77Y6J4MVbbUq6RRbLaatCvX1RD2GKLspqfOXgwXHkl9OgRHf49esTjwYPTjix9DekaMMBRt3VluuGGmBF4003xuEOHdOORcqZcU+5+pwrO5cQsRmmPGQMjRsAvv8Q/8ZAhRV9tS7lGGm6VVaIE+dVXz1+/6cIL046qyQweHHMV586Nn2oshVyq5P0DuAFYEugMXGdmf893YFIk5s6NCY9Dh0a5zR13TDsiKVPKNTLPgAFwzjkweXLakUgDNGsWNYAmTIClllp4tFKxVNtSrpFFZgYHHRTVQHfeGTp2TDsiybMWObxmELCOu88AMLMzgVeBf+UzMCkC06fD/vvD7bfH6teXXBJF+kXyQ7lGgnvUrT722CgqM2hQ2hFJA7RsCeO/7UpXFp6P9sXHXYAvCh/UgpRrpGl07QojR84vLXfppXHF4N//1kicMpPLkLxJQOuMx4sBH+YlGikuzzwT8w3OOQeuuEKNJcm3SSjXVI4uXbJvHzMG3n8/Zhpvtllsv+mmuH/ppbEorhS12hpLdW0vsEko10hTsmRU55QpkaP69NFczTKTS4PpV2C8mV1vZtcBbwE/m9mFZlY+gzZlvurF2bbdNiYz/uUv85OBSP4o11SSL76Iq7I1b18kvQ+9esHf/gbLLRePW7SIhtKf/wzLLgtbbVWWVaqkIJRrJD/+/e8oHbnEEjFU7/e/h88/TzsqaQK5DMm7K7lVG5WfUKQoPPhglDm6666Ys9SrV9oRSeVQrpHsBg2CvfeGt96KITAjR8Yw4YMPjueffjomXy+xRKphSklQrpH8WX99ePVVOPtsOO20+Rd5pKTV22By9xvMrBWwSrLpXXefld+wJBUXXQRHHRUnHSuvnHY0UmGUa6ReZrDWWnE77TSYOjW2T5sG228Ps2dHz/hee8FOO8Hii6cbbyX66iu44IK0o6iTco3kXcuW0UP+hz/AMsvEtiuvjGHFq66abmzSKLlUydsceB+4BLgUeM/MNs1vWFJQs2fHqoNHHBG1YJ99FpZfPu2opMIo10iDmEHnznG/bVt44gk49FAYOzbq4C69dKyiKoUxY0b8DenZE844I+1o6qRcIwVT3Vj68ccoEdm3b1zsmTkz3bikwXKZw/RfYGt338zdNwW2Ac7Lb1hSUMOHx9CWv/4V7rgD2rVLOyKpTMo10jhmMQzmvPOiFPmzz8aV3bXXjueffBL22QfuuQd+/TXdWMvNt9/Gz8UWg9GjY9jk22/XXdQjfco1UlgdOsRw4l13hX/8A9ZdF158Me2opAFymcPU0t3nLWPs7u+ZmcqllYO5c2PhjP32ix6lrbZKOyKpbMo1suiaNYONN45btSlT4NFH4dZb48Rll11i2N4220Dz5qmFWtLGjImepMcei9Utl1oqGqotktOKL1IvHV4X5RopvC5dYmXn/faDP/0JfvObuMCz9NJpRyY5yKWHaayZXWNmmye3q4Cx+Q5M8uyll+Lq60cfxQmGGkuSPuUayY8hQ6JS1cMPw+67R7nfP/xh/vPvvx9Dk6Vu7vDUU7D11rG48JNPwpFHxt8QmN9YKn7KNZKeHXaA8ePhjBc/ZwAAF+9JREFU7rvnN5ZefjnVkKR+uTSYDgHGA0cARwITkm1SqkaOhM03j4VpNY5WiodyjeRPy5bRo3TttdH78fjj0bs0d27kw+WWi6u+o0bBnDmxIKXZwreuXdP+JOl57724Kv7GG/Cf/8DHH8d8jNKrTKhcI+lq3z7yEUTv9/rrwx57qAR5EavzcpCZNQPGuvuawLmFCUnyxj0WgjzppBiuctdd8ydNi6RIuUYKarHFYI014r47XHxxXEi68Ua4/PIoAfxllgVWs20vR7NnxxCid9+NhtGqq8J998WIhNat639/EVKukaKzxRaxftOpp8aFnP/8J3rAm+XSpyGFUue/hrvPBV43s+6N2bmZbWtm75rZB2Z2fC3Pr2ZmL5rZr2b218YcQxrgkkuisbTffvGlVGNJioRyjaSmefOYiD1iRJTEHjkSNtgg7ajS9csvcOml0Lt3/L247775oxF23LFkG0uwaLlGeUbyomVLOOEEePPNKAbxxz9Gb5MUlVwGHC9LrIj9CjCteqO771TXm8ysOVGy87fAFGC0md3r7hMyXvYt0SW+SwPjlsY44ABo1SoWejRLOxqRmpRrJF3t2sGee8atrhx53HFxgrPkkoWLrVCeeioWCf7yyxgmdMEF0Ugqr6vdDc41yjOSd717x/II1103v1rxnDlxa9Uq3dgkpwbTqY3c90DgA3efCGBmI4CdibHCALj7V8BXZrZDI48h9XnnnVg87cYbYxHHYcPSjkgkG+UaKQ1XXAH//Gfcv+Ya+Owz2HLLKITQsgSLrX31FXz3XQy5W2UV6N8fjj02Ftksz4trjck1yjOSf2Zw4IHzH19ySSx4e9VV6vlOWdZLRmbW2syOAn4PrAY87+5PV99y2PfywCcZj6ck2xrMzIaZ2RgzG/P11183ZheV6Ykn4grh889H2VeRIqRcIyXn66/nD0t79lk4+WTYaKMorb3jjnFyUwomT56/2Oyhh8a25ZeHBx6IQhhl1lhaxFzTZHkmiUW5RurXu3cservRRvDnP8d9SUVdfew3AFXAm8B2xEJvDVFbpvUG7iPe5H6lu1e5e9XSqlefm6uugm23hW7dolzlmmumHZFINso1UnzqWng1c3jM9ddHA+r222O+z/vvR4Oj2jHHxBXiiRPzGm6DvPMODB0KK68Ml10Wi81ecknaURXCouSaJsszoFwjOdpuO5gwIS5sXHZZFKt57LG0o6pIdQ3JW8Pd1wIws2uAVxq47ynAChmPuwGfNXAf0hgXXABHHRUlK0eOhI4d045IpC7KNVJ8GrLwaqdOsb7T7rvH4xkz4udPP0UO/iz579izZ5TlPugg2HDDJg03J+7Ra3T//fC//0Wv0l/+At0bVWulFC1KrlGekXQsvjicfz7ss09Mq9B8plTU1cM0q/qOuzdmRb/RQG8zW9HMWgF7A/c2Yj/SULvsAscfH38U1ViS4qdcI+Wlerhe+/YwZUpcIb7oIujXD+68M3p4IIZKH3VUVKHL11Cb6sVmf/tbuOmm2PanP8UaShdcUEmNJVi0XKM8I+kaOBBefTXmFkKUIb/iilhLTvKurh6mtc2sOoMb0CZ5bIC7e4e6duzus83sMOARoDlwrbuPN7NDkucvN7OuwBigAzA3GVu8hrtrkGZDffpplIE97TTo0QPOOCPtiERypVwj5csMVl89bocdFhWvZifn6m++GSc8F1wQ5c0HDIgeqCOOyD4kMFdz50ZD7IwzYlh25v7atZtfhauyNDrXKM9IUaiuVjlnTsxPf+wxGD48hv2utlq6sZU5c2/0ENxUVFVV+ZgxY9IOo7i89lpMNP7xR3jllfjDLNKEzGysu1elHUchKddIQcyYAS++GEV6nngCxoyJIXxLLx29Ue+9FxX41l03GlW52nNPuO22GAb4f/8Xc5aKfP2kSswzoFwjjeQecyj/8heYNg1OPDFGF2nIXr0ak2vKamGFinTvvbDxxvGH9Pnn1VgSESklrVvDFlvAv/4VDafvv4/GEsQC4yecEENxOneOBXavuCKe69o1eq9q3qp7koYOhZtvjiIUhxxS9I0lEWkgs1hf8+23Ybfd4N//VkXkPFKDqZRddlnMV+rTJ3qW+vZNOyIREVkUmUPlLr00ik/ccksUlBg3Dm64IZ778sva3//VV/Fz++1h8GBokctyiyJSsrp0gVtvjbmSq6wS2666Cn74Id24yowaTKWsT59YkX3UqLjaKCIi5aVLl8jzV18NH30EjzySdkQiUoxWWil+jh8fvcprrAF33ZVuTGVEDaZS8913McEPYNNN437btunGJCIihdG+fdoRiEgx69MHXnophvHutlvcPlMF/EWlBlMp+fBD2GADOPDAKAkrIiIiIpJpwIAoIHPGGfDQQ7DJJlFZTxpNDaZS8dxzsN56saL8o49G6XARERERkZpatoyqeW++GXPemzePRtMHH6QdWUlSg6kUDB8eZWWXWiq6WasXLRMRkcqUbZ2mRV2/SUTKS69esPXWcf/yy2PI3qmnwq+/phtXiVGDqRRMmwYbbhiNpd69045GRETS9sUXsQ5LzdsXX6QdmYgUqz32iIqbp5wC66wTy9FITtRgKlYzZkQDCWDYsFiPY6ml0o1JREREREpTly6xTMEDD8TF+I03jvWbpF5qMBWjL7+MhQy32irmLEHDVngXEREREanN9ttH+fGjj4aNNoptKgpRJzWYikHNFdu7do3epZYt56/4LiIiIiLSFBZfHM49d/68+GOPhdatFzwfzTwvrXBqMBWDbCu2f/99QcMQERERkQq03HLZC0FkO0+tIGowiYiIiIhUsr/+Ne0IipoaTCIiIiIiIlmowSQiIiIiIpKFGkwiIiIiIiJZqMFUDLRiu4iIiIikSeejWbVIOwBBK7OLiIiISLp0PpqVephERERERESyUINJREREREQkCzWYREREREREslCDSUREREREJAs1mERERERERLJQg0lERERERCQLNZhERERERESyUINJREREREQkCzWYREREREREslCDSUREREREJIu8NpjMbFsze9fMPjCz42t53szswuT5N8xs3XzGIyLlSblGRPJNeUakcuWtwWRmzYFLgO2ANYBBZrZGjZdtB/RObsOAy/IVj4iUJ+UaEck35RmRypbPHqaBwAfuPtHdZwIjgJ1rvGZn4EYPLwFLmNmyeYxJRMqPco2I5JvyjEgFy2eDaXngk4zHU5JtDX2NiEhdlGtEJN+UZ0QqWIs87ttq2eaNeA1mNozo3gb42czeXcTYilln4Ju0g5AGK/d/tx5pB1CHtHNNsf/bF3t8UPwxKr5Fk2t8FZFnoKLOa4r9/6ZkV87/dg3ONflsME0BVsh43A34rBGvwd2vBK5s6gCLkZmNcfeqtOOQhtG/W6pSzTXF/m9f7PFB8ceo+BZNsceXoybLM1A55zVl8m9fkfRvt6B8DskbDfQ2sxXNrBWwN3BvjdfcCwxJKsusD/zg7p/nMSYRKT/KNSKSb8ozIhUsbz1M7j7bzA4DHgGaA9e6+3gzOyR5/nLgQWB74ANgOnBAvuIRkfKkXCMi+aY8I1LZzL3W4bWSEjMblnTVSwnRv1vlKvZ/+2KPD4o/RsW3aIo9Pskf/duXLv3bLUgNJhERERERkSzyOYdJRERERESkpKnBVCTMbFsze9fMPjCz49OOR3JjZtea2Vdm9lbasUhhFft3ttj/b5rZCmb2lJm9bWbjzezItGPKZGatzewVM3s9ie/UtGOqjZk1N7PXzOz+tGOpjZlNMrM3zWycmY1JOx4pnGLPkVK7Yv/bkRYNySsCZtYceA/4LVGWdDQwyN0npBqY1MvMNgV+JlZ3XzPteKQwSuE7W+z/N81sWWBZd3/VzNoDY4FdiuV3aGYGtHP3n82sJfAccKS7v5RyaAsws2OAKqCDu++Ydjw1mdkkoMrdy3U9F6lFKeRIqV2x/+1Ii3qYisNA4AN3n+juM4ERwM4pxyQ5cPdngG/TjkMKrui/s8X+f9PdP3f3V5P7PwFvA8unG9V8Hn5OHrZMbkV1hdHMugE7AFenHYtIDUWfI6V2xf63Iy1qMBWH5YFPMh5PoYhOHERkIfrONiEz6wmsA7yccigLSIa7jQO+Ah5z96KKDzgfOA6Ym3IcdXHgUTMba2bD0g5GCkY5UsqKGkzFwWrZVlRXMkVkAfrONhEzWxy4AzjK3X9MO55M7j7H3fsB3YCBZlY0w1PMbEfgK3cfm3Ys9djI3dcFtgP+nAz3kfKnHCllRQ2m4jAFWCHjcTfgs5RiEZH66TvbBJK5QXcAw939zrTjycbdvwdGAdumG8kCNgJ2SuYIjQB+Y2Y3pxvSwtz9s+TnV8BdxFAtKX/KkVJW1GAqDqOB3ma2opm1AvYG7k05JhHJTt/ZRZQUVbgGeNvdz007nprMbGkzWyK53wbYCngn1aAyuPsJ7t7N3XsS//+edPd9Uw5rAWbWLinogZm1A7YGVHmrMihHSllRg6kIuPts4DDgEWLi8//cfXy6UUkuzOxW4EVgVTObYmYHpR2T5F8pfGdL4P/mRsB+RM/IuOS2fdpBZVgWeMrM3iBO/h5z96Is3V3EugDPmdnrwCvAA+7+cMoxSQGUQo6U2pXA345UqKy4iIiIiIhIFuphEhERERERyUINJhERERERkSzUYBIREREREclCDSYREREREZEs1GASERERERHJQg2mEmVmc5IyvG+Z2W1m1rYJ9vlPM9uqKeLLFzPbxczWyOW5Uvg8IsUo1/xiZi804TGHmtnFyf1DzGzIouyjludeSH72NLO3kvtVZnZhcn9zM9uwgcc7xcz+2tA4C71PkXzK/E5lbMvr/2MzO9vMxpvZ2Vmev8fMXqwlpk8zljE4swni6Glm+2Q8npdT0mRmPy/Ce4ea2XJNGU85UIOpdP3i7v3cfU1gJnBI5pNm1ryhO3T3f7j7400VYJ7sAtTaYKr5XIl8HpFilFN+cfecGxgNyUnufrm735jr63Pc50KxuvsYdz8iebg50KAGk4ik5o/Auu5+bM0nkgWn1wWWMLMVazx9XpLb+rn78U0QR09gXoOpRk4pVUMBNZhqUIOpPDwL9EqukD5lZrcAb5pZ8+QqzGgze8PM/lj9BjM7zszeNLPXq6+ymNn1ZrZHcv9MM5uQvO+cZNvSZnZHsr/RZrZRzUDMrLWZXZfs+zUz2yLZPtTM7jSzh83sfTP7T7K9eXLct5L3HJ1sXzl57Vgze9bMVkuu/u4EnJ1cHVo547gLPVfj80wys3+b2YtmNsbM1jWzR8zsQzM7JGM/x2b8vk5t2n8mkZJUa36B+VcxLZyd8T3eK9m+0HsymdkBZvaemT1NLGRbvX3e1WkzOyIjF41Itg00sxeSHPOCma2asdsVktzxrpmdnLHPha64JvHdb2Y9iUbh0Un+2MTMPjKzlsnrOiQ5pGW2X1KWnNUxeV+z5DVtzewTM2tZ2+tz++cQKS1ZvsPtzOza5O/ta2a2cy3vy5ZX7gXaAS9Xb6thd+A+YASwdwNjPTiJ6fXkfKdtsv16M7swyTcTq88tgDOBTZK8cXR1Tknes7jNPx96w8x2T7YPSra9ZWZnZRz7suT8ZHzm+YeZbW9m75jZc0kM1ftfoBcv2V/PWj7TQuc1Fj1jb5vZVcnxHjWzNsnnqgKGJ5+pjdVyPliR3F23ErwBPyc/WwD3AH8irpBOA1ZMnhsG/D25vxgwBlgR2A54AWibPLdU8vN6YA9gKeBd5i9svETy8xZg4+R+d+DtWuL6C3Bdcn81YDLQmrhiMRHomDz+GFgB6A88lvH+6mM9AfRO7q8HPJkZY5bfyQLPZT4GJgF/Su6fB7wBtAeWBr5Ktm8NXAkYcTHhfmDTtP+tddOt0Ldc8kuN1+0OPAY0B7ok3/tla3tPxnuXTV63NNAKeB64OHnuFOCvyf3PgMWS+0skPzsALZL7WwF3JPeHAp8DnYA2wFtAVY1YewJvJfc3B+6veczk8XXALsn9YcB/a/kMmXFmy1n3AFsk9/cCrq7n9QvEoZtuxX7L/E5lbKvvO/xvYN/qbcB7QLsa+6g1ryTP/VxHPI8DmwCrAG/UiOlTYFxy26aW93bKuP8v4PDk/vXAbcS5wRrAB8n2eTmk5mPgLOD8jOeWJHpuqvNeC+DJjDxTfS7WHBgF9CXOlz5h/nndrXXkrLeAnpm/H7Kc1yT/ZrOBfsnr/pfx7zGK+Xmz1vPBSry1QEpVGzMbl9x/FriGGE7yirt/lGzfGuibcSWkI9CbOMG4zt2nA7j7tzX2/SMwA7jazB4gvmAk71vDzKpf18HM2rv7Txnv3Ri4KNnvO2b2MZG0AJ5w9x8AzGwC0AMYD6xkZhcBDwCPmtniyWe5LeNYizXkl5PFvcnPN4HFk7h/MrMZFl34Wye315LXLU78vp5pgmOLlJJc8kumjYFb3X0O8KVFj9EAIpdke896wCh3/xrAzEYyP1dkeoO42nk3cHeyrSNwg5n1BhzI7Pl5zN2nJvu8M4ltTC4fuoargeOSYx4AHJzthfXkrJFEQ+kp4mr3pXnMcSJp8Hq21/Yd3hrYKaOHpDXJhdiM92fLK/eShZl1AXoBz7m7m9lsM1vT3avnWJ3n7nX1kqxpZv8iGnGLA49kPHe3u88FJiTHqc9WZPRwuft3ZrYpC+a94UQD5m5gTzMbRjSkliUaZs2AiRk59FbiAk6usp3XTAY+cvdxyfaxRCOqpmzngxVHDabS9Yu798vckPzhnZa5ibg68kiN121L9gSHu882s4HAlsSX/TDgN8QXdwN3/6WOuKyO537NuD+HuEL8nZmtDWwD/BnYEzgK+L7m52sC1cefWyOWucR3wYAz3P2KJj6uSKnJJb8s8HQd+8r2HqgjD2XYgTih2Ak4ycz6AKcBT7n7rskQlFF17DOXYywcmPvzybCVzYDmGSdctWlG9px1L3CGmS1F9Kg/SQwnykeOE0nDVKL3JNNSQPVJfm3fYQN2d/d369hvXXklm72SWD5KclYH4jzm7zm+/3qix+d1MxtK9BhVyzxvyCU2Y+H8U+v7LOZa/RUYkJwXXU80Ius6zmwWnFrTOksMC53XJHmz5jlZm5pvruN8sOJoDlN5ewT4k80fh7+KmbUDHgUOzBibu1Tmm5Krnx3d/UGi8dIveepR4stS/bp+LOwZYHD18YgrRlkTopl1Bpq5+x3AScQkzh+JZPf75DWWNKoAfiKG0tWmrudy8Qjxe1k8Oe7yZrbMIuxPpFI8A+xlMSdxaeLk6JV63vMysLmZdUpy1O9rvsBi7s8K7v4U0duzBHGFtCMxtAZiGF6m35rZUmbWhigE83yOn6G2/HEjcUX3urreWFfOcvefid/FBcRQmjn15DiRkpL8H//czLaEeecU2wLP1fEdfgQ43JJWjZmtU8uuG5NXBgHbuntPd+9JXKRoyDym9slnaUlyLlOPus47ap4zLUnkvc3MrLNFIZxBwNNEw24a8EPSe7Vd8rZ3iFE4PZPHmXO2JhHFLTCzdYkpFzU15rxm3meq43yw4qjBVN6uBiYAr1qU/LyC6NV5mLjqOSYZdlOz9Gd74H4ze4P4Ih+dbD8CqEom/k2gRuWsxKVAczN7kxiKMtTdf63lddWWB0YlcVwPnJBsHwwcZGavE8P2qieEjgCOtZgkunKNfdX1XL3c/VFintaLSfy3s2gNMJFKcRcx7OZ1ogflOHf/oq43uPvnxBj8F4k5B6/W8rLmwM3J9/E1YjjN98B/iF6b55PXZHoOuImYo3CHu+c6HO8+YFdLij4k24YTV6tvzeH92XIWRC7cN/mZy+tFSs0Q4O/J3/IngVPd/UOyf4dPI4bSvpGcn5xWyz4blFeSRkV34KXqbclQth/NbL0cP8dJRKPmMaKxUp83gNkWRSKOrvHcv4AlLYoxvE7MZfycOM95Kvlcr7r7Pe7+OvH7GQ9cS3KhJxnRcyjwsJk9B3wJ/JDs/w5gqeR3/idiHtgCGnlecz1webLfbOeDFad6EpeIiIhksJj/ubO775d2LCJSmcxscXf/OemNuwR4393PSzuuSqM5TCIiIjVYFKLZDtg+7VhEpKIdbGb7E9VEXyNGC0mBqYdJREREREQkC81hEhERERERyUINJhERERERkSzUYBIREREREclCDSYREREREZEs1GASERERERHJQg0mERERERGRLP4fJx3fgeXsug4AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "feat_to_show = [feature_name_dict[feat] for feat in key_features][0:7]\n", "feat_to_show.remove('Stroke team')\n", "fig = plt.figure(figsize=(12,9))\n", "\n", "for n, feat in enumerate(feat_to_show):\n", " \n", " ax = fig.add_subplot(2,3,n+1)\n", " \n", " ### Plot benchmark units ###\n", " \n", " feature_data = benchmark_data[feat]\n", " \n", " # if feature has more that 50 unique values, then assume it needs to be \n", " # binned (other assume they are unique categories)\n", " if np.unique(feature_data).shape[0] > 50:\n", " # bin the data\n", " \n", " # settings for the plot\n", " rotation = 45\n", " step = 30\n", " n_bins = 8\n", " \n", " # create list of bin values\n", " bin_list = [(i*step) for i in range(n_bins)]\n", " bin_list.append(feature_data.max())\n", "\n", " # create list of bins (the unique categories)\n", " category_list = [f'{i*step}-{(i+1)*step}' for i in range(n_bins-1)]\n", " category_list.append(f'{(n_bins)*step}+')\n", "\n", " # bin the feature data\n", " feature_data = pd.cut(feature_data, bin_list, labels=category_list)\n", "\n", " else:\n", " # create a violin per unique value\n", " \n", " # settings for the plot\n", " rotation = 45\n", " \n", " # create list of unique categories in the feature data\n", " category_list = np.unique(feature_data)\n", " \n", " # if numerical set as int, otherwise set as a range\n", " try:\n", " category_list = [int(i) for i in category_list]\n", " except: \n", " category_list = range(len(category_list))\n", " \n", " feature_data = pd.DataFrame(feature_data)\n", " feature_data['Thrombolysis'] = benchmark_data['Thrombolysis']\n", " \n", " df = feature_data.groupby(feat).mean()\n", "\n", " ax.plot(df, color='b', marker='o', linestyle='solid', label='Top 30')\n", " \n", " ### Plot low thrombolysing units ###\n", " \n", " feature_data = low_thrombolysis_data[feat]\n", " \n", " # if feature has more that 50 unique values, then assume it needs to be \n", " # binned (other assume they are unique categories)\n", " if np.unique(feature_data).shape[0] > 50:\n", " # bin the data\n", " \n", " # settings for the plot\n", " rotation = 45\n", " step = 30\n", " n_bins = 8\n", " \n", " # create list of bin values\n", " bin_list = [(i*step) for i in range(n_bins)]\n", " bin_list.append(feature_data.max())\n", "\n", " # create list of bins (the unique categories)\n", " category_list = [f'{i*step}-{(i+1)*step}' for i in range(n_bins-1)]\n", " category_list.append(f'{(n_bins)*step}+')\n", "\n", " # bin the feature data\n", " feature_data = pd.cut(feature_data, bin_list, labels=category_list)\n", "\n", " else:\n", " # create a violin per unique value\n", " \n", " # settings for the plot\n", " rotation = 45\n", " \n", " # create list of unique categories in the feature data\n", " category_list = np.unique(feature_data)\n", " \n", " # if numerical set as int, otherwise set as a range\n", " try:\n", " category_list = [int(i) for i in category_list]\n", " except: \n", " category_list = range(len(category_list))\n", " \n", " feature_data = pd.DataFrame(feature_data)\n", " feature_data['Thrombolysis'] = low_thrombolysis_data['Thrombolysis']\n", " \n", " df = feature_data.groupby(feat).mean()\n", "\n", " ax.plot(df, color='r', marker='s', linestyle='dashed', \n", " label='Bottom 30')\n", " ax.set_title(feat)\n", " ax.set_ylim(0, 0.62)\n", " ax.set_xlabel(feat) \n", " ax.set_ylabel('Proportion receiving thrombolysis')\n", " ax.legend()\n", " \n", " # Customise axis for particular plots\n", " # Force just two points on axis when a binary feature\n", " if len(df.index) == 2:\n", " ax.set_xticks(df.index)\n", " ax.set_xlim(-0.5, 1.5)\n", " # Censor stroke severity at 35 due to lack of data\n", " if feat == 'Stroke severity':\n", " ax.set_xlim(0,35)\n", " \n", " # Rotate ticks for arrival-to-scan\n", " if feat == 'Arrival-to-scan time':\n", " for tick in ax.get_xticklabels():\n", " tick.set_rotation(45)\n", "\n", "plt.tight_layout(pad=2)\n", "plt.savefig('output/compare_thrombolysis_by_feature.jpg', dpi=300,\n", " bbox_inches='tight', pad_inches=0.2)" ] }, { "cell_type": "markdown", "id": "2a45af5b-a6b3-41d7-b30e-046e3879c82b", "metadata": {}, "source": [ "## Observations\n", "\n", "Thrombolysis use in low thrombolysing hospitals follows the same general relationship with feature values as the high thrombolysing hospitals, but thrombolysis is consistently lower." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.13" } }, "nbformat": 4, "nbformat_minor": 5 }