{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# National mRS distributions\n", "\n", "This notebook creates a plot of the mRS distributions averaged across England and Wales.\n", "\n", "## Plain English summary\n", "\n", "This notebook loads the data that we created in a previous notebook. It loads the mRS distributions averaged across all parts of England and Wales where redirection from the nearest stroke unit to an MT centre makes a difference to which stroke unit is attended first.\n", "\n", "## Aims\n", "\n", "Plot the national mRS distributions for these cohorts:\n", "+ nLVO with IVT\n", "+ LVO with mixed treatments\n", "+ treated ischaemic population\n", "\n", "\n", "## Methods\n", "\n", "Load in the existing data.\n", "\n", "Create new no-treatment mRS distributions for the weighted combination by combining the separate nLVO and LVO no-treatment distributions in the required proportions.\n", "\n", "Plot the mRS distributions and the cumulative probabilities." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "dir_output = 'output'\n", "limit_to_england = False" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Import packages" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import pandas as pd\n", "import os\n", "\n", "import stroke_outcome.outcome_utilities\n", "\n", "pd.set_option('display.max_rows', 150)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'0.1.6'" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "stroke_outcome.__version__" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Load data\n", "\n", "Results from outcome model:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "df_mrs_national_cumsum = pd.read_csv(os.path.join(dir_output, 'cohort_mrs_dists_weighted_national.csv'), index_col=0)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
mRS<=0mRS<=1mRS<=2mRS<=3mRS<=4mRS<=5mRS<=6
drip_ship_lvo_ivt0.103560.195440.327880.490120.708570.823161.0
drip_ship_lvo_ivt_mt0.114720.226050.371760.544530.750470.850841.0
drip_ship_lvo_mix0.113820.223650.368350.540310.747230.848691.0
drip_ship_lvo_mt0.114490.225890.371700.544550.750520.850861.0
drip_ship_nlvo_ivt0.361340.589060.705080.824160.921230.955151.0
drip_ship_weighted0.182500.390150.515470.653990.819880.895751.0
drip_ship_weighted_treated0.236550.404820.535310.681050.833500.901481.0
mothership_lvo_ivt0.097050.188090.321010.483290.703840.819821.0
mothership_lvo_ivt_mt0.155230.276700.420800.593780.783270.872471.0
mothership_lvo_mix0.150720.269840.413060.585220.777110.868391.0
mothership_lvo_mt0.155230.276700.420800.593780.783270.872471.0
mothership_nlvo_ivt0.344420.577360.694310.814940.916170.952061.0
mothership_weighted0.185040.394500.519750.658490.823010.897841.0
mothership_weighted_treated0.246760.422310.552510.699110.846060.909881.0
\n", "
" ], "text/plain": [ " mRS<=0 mRS<=1 mRS<=2 mRS<=3 mRS<=4 \\\n", "drip_ship_lvo_ivt 0.10356 0.19544 0.32788 0.49012 0.70857 \n", "drip_ship_lvo_ivt_mt 0.11472 0.22605 0.37176 0.54453 0.75047 \n", "drip_ship_lvo_mix 0.11382 0.22365 0.36835 0.54031 0.74723 \n", "drip_ship_lvo_mt 0.11449 0.22589 0.37170 0.54455 0.75052 \n", "drip_ship_nlvo_ivt 0.36134 0.58906 0.70508 0.82416 0.92123 \n", "drip_ship_weighted 0.18250 0.39015 0.51547 0.65399 0.81988 \n", "drip_ship_weighted_treated 0.23655 0.40482 0.53531 0.68105 0.83350 \n", "mothership_lvo_ivt 0.09705 0.18809 0.32101 0.48329 0.70384 \n", "mothership_lvo_ivt_mt 0.15523 0.27670 0.42080 0.59378 0.78327 \n", "mothership_lvo_mix 0.15072 0.26984 0.41306 0.58522 0.77711 \n", "mothership_lvo_mt 0.15523 0.27670 0.42080 0.59378 0.78327 \n", "mothership_nlvo_ivt 0.34442 0.57736 0.69431 0.81494 0.91617 \n", "mothership_weighted 0.18504 0.39450 0.51975 0.65849 0.82301 \n", "mothership_weighted_treated 0.24676 0.42231 0.55251 0.69911 0.84606 \n", "\n", " mRS<=5 mRS<=6 \n", "drip_ship_lvo_ivt 0.82316 1.0 \n", "drip_ship_lvo_ivt_mt 0.85084 1.0 \n", "drip_ship_lvo_mix 0.84869 1.0 \n", "drip_ship_lvo_mt 0.85086 1.0 \n", "drip_ship_nlvo_ivt 0.95515 1.0 \n", "drip_ship_weighted 0.89575 1.0 \n", "drip_ship_weighted_treated 0.90148 1.0 \n", "mothership_lvo_ivt 0.81982 1.0 \n", "mothership_lvo_ivt_mt 0.87247 1.0 \n", "mothership_lvo_mix 0.86839 1.0 \n", "mothership_lvo_mt 0.87247 1.0 \n", "mothership_nlvo_ivt 0.95206 1.0 \n", "mothership_weighted 0.89784 1.0 \n", "mothership_weighted_treated 0.90988 1.0 " ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_mrs_national_cumsum" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "df_mrs_national_noncum = pd.read_csv(os.path.join(dir_output, 'cohort_mrs_dists_weighted_national_noncum.csv'), index_col=0)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
mRS=0mRS=1mRS=2mRS=3mRS=4mRS=5mRS=6
drip_ship_lvo_ivt0.103560.091880.132440.162240.218450.114590.17684
drip_ship_lvo_ivt_mt0.114720.111330.145710.172770.205940.100370.14916
drip_ship_lvo_mix0.113820.109830.144700.171970.206920.101460.15131
drip_ship_lvo_mt0.114490.111390.145820.172840.205970.100340.14914
drip_ship_nlvo_ivt0.361340.227710.116030.119070.097070.033930.04485
drip_ship_weighted0.182500.207650.125320.138520.165890.075860.10425
drip_ship_weighted_treated0.236550.168280.130480.145740.152450.067980.09852
mothership_lvo_ivt0.097050.091040.132930.162280.220540.115990.18018
mothership_lvo_ivt_mt0.155230.121470.144090.172980.189490.089210.12753
mothership_lvo_mix0.150720.119110.143230.172150.191890.091280.13161
mothership_lvo_mt0.155230.121470.144090.172980.189490.089210.12753
mothership_nlvo_ivt0.344420.232940.116950.120620.101240.035890.04794
mothership_weighted0.185040.209460.125250.138730.164520.074830.10216
mothership_weighted_treated0.246760.175550.130200.146600.146950.063820.09012
\n", "
" ], "text/plain": [ " mRS=0 mRS=1 mRS=2 mRS=3 mRS=4 \\\n", "drip_ship_lvo_ivt 0.10356 0.09188 0.13244 0.16224 0.21845 \n", "drip_ship_lvo_ivt_mt 0.11472 0.11133 0.14571 0.17277 0.20594 \n", "drip_ship_lvo_mix 0.11382 0.10983 0.14470 0.17197 0.20692 \n", "drip_ship_lvo_mt 0.11449 0.11139 0.14582 0.17284 0.20597 \n", "drip_ship_nlvo_ivt 0.36134 0.22771 0.11603 0.11907 0.09707 \n", "drip_ship_weighted 0.18250 0.20765 0.12532 0.13852 0.16589 \n", "drip_ship_weighted_treated 0.23655 0.16828 0.13048 0.14574 0.15245 \n", "mothership_lvo_ivt 0.09705 0.09104 0.13293 0.16228 0.22054 \n", "mothership_lvo_ivt_mt 0.15523 0.12147 0.14409 0.17298 0.18949 \n", "mothership_lvo_mix 0.15072 0.11911 0.14323 0.17215 0.19189 \n", "mothership_lvo_mt 0.15523 0.12147 0.14409 0.17298 0.18949 \n", "mothership_nlvo_ivt 0.34442 0.23294 0.11695 0.12062 0.10124 \n", "mothership_weighted 0.18504 0.20946 0.12525 0.13873 0.16452 \n", "mothership_weighted_treated 0.24676 0.17555 0.13020 0.14660 0.14695 \n", "\n", " mRS=5 mRS=6 \n", "drip_ship_lvo_ivt 0.11459 0.17684 \n", "drip_ship_lvo_ivt_mt 0.10037 0.14916 \n", "drip_ship_lvo_mix 0.10146 0.15131 \n", "drip_ship_lvo_mt 0.10034 0.14914 \n", "drip_ship_nlvo_ivt 0.03393 0.04485 \n", "drip_ship_weighted 0.07586 0.10425 \n", "drip_ship_weighted_treated 0.06798 0.09852 \n", "mothership_lvo_ivt 0.11599 0.18018 \n", "mothership_lvo_ivt_mt 0.08921 0.12753 \n", "mothership_lvo_mix 0.09128 0.13161 \n", "mothership_lvo_mt 0.08921 0.12753 \n", "mothership_nlvo_ivt 0.03589 0.04794 \n", "mothership_weighted 0.07483 0.10216 \n", "mothership_weighted_treated 0.06382 0.09012 " ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_mrs_national_noncum" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "df_mrs_national_std = pd.read_csv(os.path.join(dir_output, 'cohort_mrs_dists_weighted_national_std.csv'), index_col=0)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
mRS=0mRS=1mRS=2mRS=3mRS=4mRS=5mRS=6
drip_ship_lvo_ivt0.002620.000290.000220.000030.000830.000550.00129
drip_ship_lvo_ivt_mt0.009830.003990.001430.001290.004520.003550.00729
drip_ship_lvo_mix0.007840.003170.001120.001020.003600.002830.00580
drip_ship_lvo_mt0.010370.003730.000540.000800.004600.003470.00723
drip_ship_nlvo_ivt0.006670.002150.000390.000640.001600.000740.00116
drip_ship_weighted0.001280.000480.000150.000150.000490.000370.00074
drip_ship_weighted_treated0.005150.001920.000600.000600.001980.001470.00298
mothership_lvo_ivt0.005680.000900.000350.000040.001880.001280.00309
mothership_lvo_ivt_mt0.012270.002500.000930.000320.004750.003070.00577
mothership_lvo_mix0.009780.001990.000740.000250.003780.002450.00460
mothership_lvo_mt0.012270.002500.000930.000320.004750.003070.00577
mothership_nlvo_ivt0.015200.004440.000750.001310.003870.001870.00297
mothership_weighted0.002240.000600.000130.000160.000670.000380.00068
mothership_weighted_treated0.009010.002420.000530.000660.002710.001540.00275
\n", "
" ], "text/plain": [ " mRS=0 mRS=1 mRS=2 mRS=3 mRS=4 \\\n", "drip_ship_lvo_ivt 0.00262 0.00029 0.00022 0.00003 0.00083 \n", "drip_ship_lvo_ivt_mt 0.00983 0.00399 0.00143 0.00129 0.00452 \n", "drip_ship_lvo_mix 0.00784 0.00317 0.00112 0.00102 0.00360 \n", "drip_ship_lvo_mt 0.01037 0.00373 0.00054 0.00080 0.00460 \n", "drip_ship_nlvo_ivt 0.00667 0.00215 0.00039 0.00064 0.00160 \n", "drip_ship_weighted 0.00128 0.00048 0.00015 0.00015 0.00049 \n", "drip_ship_weighted_treated 0.00515 0.00192 0.00060 0.00060 0.00198 \n", "mothership_lvo_ivt 0.00568 0.00090 0.00035 0.00004 0.00188 \n", "mothership_lvo_ivt_mt 0.01227 0.00250 0.00093 0.00032 0.00475 \n", "mothership_lvo_mix 0.00978 0.00199 0.00074 0.00025 0.00378 \n", "mothership_lvo_mt 0.01227 0.00250 0.00093 0.00032 0.00475 \n", "mothership_nlvo_ivt 0.01520 0.00444 0.00075 0.00131 0.00387 \n", "mothership_weighted 0.00224 0.00060 0.00013 0.00016 0.00067 \n", "mothership_weighted_treated 0.00901 0.00242 0.00053 0.00066 0.00271 \n", "\n", " mRS=5 mRS=6 \n", "drip_ship_lvo_ivt 0.00055 0.00129 \n", "drip_ship_lvo_ivt_mt 0.00355 0.00729 \n", "drip_ship_lvo_mix 0.00283 0.00580 \n", "drip_ship_lvo_mt 0.00347 0.00723 \n", "drip_ship_nlvo_ivt 0.00074 0.00116 \n", "drip_ship_weighted 0.00037 0.00074 \n", "drip_ship_weighted_treated 0.00147 0.00298 \n", "mothership_lvo_ivt 0.00128 0.00309 \n", "mothership_lvo_ivt_mt 0.00307 0.00577 \n", "mothership_lvo_mix 0.00245 0.00460 \n", "mothership_lvo_mt 0.00307 0.00577 \n", "mothership_nlvo_ivt 0.00187 0.00297 \n", "mothership_weighted 0.00038 0.00068 \n", "mothership_weighted_treated 0.00154 0.00275 " ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_mrs_national_std" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array(['drip_ship_lvo_ivt', 'drip_ship_lvo_ivt_mt', 'drip_ship_lvo_mix',\n", " 'drip_ship_lvo_mt', 'drip_ship_nlvo_ivt', 'drip_ship_weighted',\n", " 'drip_ship_weighted_treated', 'mothership_lvo_ivt',\n", " 'mothership_lvo_ivt_mt', 'mothership_lvo_mix', 'mothership_lvo_mt',\n", " 'mothership_nlvo_ivt', 'mothership_weighted',\n", " 'mothership_weighted_treated'], dtype=object)" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cols_each_scen = df_mrs_national_noncum.index.values\n", "\n", "cols_each_scen" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Reference no-treatment mRS distributions:" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "mrs_dists, mrs_dists_notes = (\n", " stroke_outcome.outcome_utilities.import_mrs_dists_from_file())" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
mRS<=0mRS<=1mRS<=2mRS<=3mRS<=4mRS<=5mRS<=6
Stroke type
pre_stroke_nlvo0.5830.7460.8500.9510.9931.0001
pre_stroke_lvo0.4080.5520.6720.8380.9561.0001
no_treatment_lvo0.0500.1290.2650.4290.6760.8111
no_treatment_nlvo0.1980.4600.5800.7080.8560.9181
no_effect_nlvo_ivt_deaths0.1960.4550.5740.7010.8470.9081
no_effect_lvo_ivt_deaths0.0480.1240.2550.4140.6530.7831
no_effect_lvo_mt_deaths0.0480.1240.2550.4120.6490.7791
t0_treatment_nlvo_ivt0.4450.6420.7520.8620.9410.9671
t0_treatment_lvo_ivt0.1400.2330.3610.5220.7300.8381
t0_treatment_lvo_mt0.3060.4290.5480.7070.8510.9151
\n", "
" ], "text/plain": [ " mRS<=0 mRS<=1 mRS<=2 mRS<=3 mRS<=4 mRS<=5 \\\n", "Stroke type \n", "pre_stroke_nlvo 0.583 0.746 0.850 0.951 0.993 1.000 \n", "pre_stroke_lvo 0.408 0.552 0.672 0.838 0.956 1.000 \n", "no_treatment_lvo 0.050 0.129 0.265 0.429 0.676 0.811 \n", "no_treatment_nlvo 0.198 0.460 0.580 0.708 0.856 0.918 \n", "no_effect_nlvo_ivt_deaths 0.196 0.455 0.574 0.701 0.847 0.908 \n", "no_effect_lvo_ivt_deaths 0.048 0.124 0.255 0.414 0.653 0.783 \n", "no_effect_lvo_mt_deaths 0.048 0.124 0.255 0.412 0.649 0.779 \n", "t0_treatment_nlvo_ivt 0.445 0.642 0.752 0.862 0.941 0.967 \n", "t0_treatment_lvo_ivt 0.140 0.233 0.361 0.522 0.730 0.838 \n", "t0_treatment_lvo_mt 0.306 0.429 0.548 0.707 0.851 0.915 \n", "\n", " mRS<=6 \n", "Stroke type \n", "pre_stroke_nlvo 1 \n", "pre_stroke_lvo 1 \n", "no_treatment_lvo 1 \n", "no_treatment_nlvo 1 \n", "no_effect_nlvo_ivt_deaths 1 \n", "no_effect_lvo_ivt_deaths 1 \n", "no_effect_lvo_mt_deaths 1 \n", "t0_treatment_nlvo_ivt 1 \n", "t0_treatment_lvo_ivt 1 \n", "t0_treatment_lvo_mt 1 " ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mrs_dists" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "mrs_dist_nlvo_no_treatment = mrs_dists.loc['no_treatment_nlvo'].values\n", "mrs_dist_lvo_no_treatment = mrs_dists.loc['no_treatment_lvo'].values\n", "\n", "mrs_dist_nlvo_no_treatment_noncum = np.diff(mrs_dist_nlvo_no_treatment, prepend=0.0)\n", "mrs_dist_lvo_no_treatment_noncum = np.diff(mrs_dist_lvo_no_treatment, prepend=0.0)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Stroke type proportions:" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "proportions = pd.read_csv(\n", " os.path.join(dir_output, 'patient_proportions.csv'),\n", " index_col=0, header=None).squeeze()" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0\n", "haemorrhagic 0.13600\n", "lvo_no_treatment 0.14648\n", "lvo_ivt_only 0.00840\n", "lvo_ivt_mt 0.08500\n", "lvo_mt_only 0.01500\n", "nlvo_no_treatment 0.50252\n", "nlvo_ivt 0.10660\n", "Name: 1, dtype: float64" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "proportions" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Calculate weighted no treatment dist:" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "prop_lvo_treated = 0.0\n", "prop_nlvo_treated = 0.0\n", "\n", "for key, value in proportions.items():\n", " if ('nlvo' in key) & ('no_treatment' not in key):\n", " prop_nlvo_treated += value\n", " elif ('lvo' in key) & ('no_treatment' not in key):\n", " prop_lvo_treated += value" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(0.10840000000000001, 0.1066)" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "prop_lvo_treated, prop_nlvo_treated" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(0.5041860465116279, 0.49581395348837204)" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "prop_lvo_treated / (prop_nlvo_treated + prop_lvo_treated), prop_nlvo_treated / (prop_nlvo_treated + prop_lvo_treated)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "mrs_dist_weighted_no_treatment_noncum = (\n", " (mrs_dist_nlvo_no_treatment_noncum * prop_nlvo_treated) +\n", " (mrs_dist_lvo_no_treatment_noncum * prop_lvo_treated)\n", ")\n", "\n", "# Remove the non-treated patients:\n", "mrs_dist_weighted_no_treatment_noncum = (\n", " mrs_dist_weighted_no_treatment_noncum / (prop_nlvo_treated + prop_lvo_treated)\n", ")" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1.0" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.sum(mrs_dist_weighted_no_treatment_noncum)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "# Same structure as the other distribution dictionaries:\n", "dict_no_treat = {\n", " 'nlvo': {\n", " 'values': mrs_dist_nlvo_no_treatment_noncum,\n", " 'cumsum': np.cumsum(mrs_dist_nlvo_no_treatment_noncum)\n", " },\n", " 'lvo': {\n", " 'values': mrs_dist_lvo_no_treatment_noncum,\n", " 'cumsum': np.cumsum(mrs_dist_lvo_no_treatment_noncum)\n", " },\n", " # 'weighted': {\n", " # 'values': mrs_dist_weighted_no_treatment_noncum,\n", " # 'cumsum': np.cumsum(mrs_dist_weighted_no_treatment_noncum)\n", " # },\n", " 'weighted_treated': {\n", " 'values': mrs_dist_weighted_no_treatment_noncum,\n", " 'cumsum': np.cumsum(mrs_dist_weighted_no_treatment_noncum)\n", " },\n", "}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Gather data for plots" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "def gather_dists(scenario, df_mrs_national_noncum, df_mrs_national_std, df_mrs_national_cumsum):\n", " d = {}\n", "\n", " for cohort in ['nlvo_ivt', 'lvo_mix', 'weighted_treated']:\n", " ind = f'{scenario}_{cohort}'\n", "\n", " d[cohort] = {}\n", " d[cohort]['values'] = df_mrs_national_noncum.loc[ind]\n", " d[cohort]['std'] = df_mrs_national_std.loc[ind]\n", " d[cohort]['cumsum'] = df_mrs_national_cumsum.loc[ind]\n", " \n", " return d" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "dict_drip_ship = gather_dists('drip_ship', df_mrs_national_noncum, df_mrs_national_std, df_mrs_national_cumsum)\n", "dict_mothership = gather_dists('mothership', df_mrs_national_noncum, df_mrs_national_std, df_mrs_national_cumsum)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Plot" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "colour_drip = '#00517f' # seaborn colorblind blue darker\n", "colour_moth = '#0072b2' # seaborn colorblind blue\n", "colour_no_treat = 'DarkGray'" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABXAAAAJwCAYAAAAgKEkgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVzU1f7H8fewI7igKIui4FIuqSQkae5haGqZ5taiopWlVkZl0SKgdklTI82UFrfu9adWXqtbYUZqWablkqZprpnK4oYoJiB8f3+QY9OAAgIz6Ov5eHwfzTnf8z3zOYNxmM+cOV+TYRiGAAAAAAAAAAB2x8HWAQAAAAAAAAAACkcCFwAAAAAAAADsFAlcAAAAAAAAALBTJHABAAAAAAAAwE6RwAUAAAAAAAAAO0UCFwAAAAAAAADsFAlcAAAAAAAAALBTJHABAAAAAAAAwE6RwAUAAAAAAAAAO0UCFwAAAACAMnbw4EGZTCYtWLDgsu3WrFkjk8mkNWvWlHkMgYGB6t27d5n3WxGGDx+uwMBAW4dRoUwmk2JjY8u0zy5duqhLly5l2ieAikcCF7gGFPWHWatWrVS/fn0ZhlHktbfddpt8fHx04cIFc92OHTv0wAMPqG7dunJ1dZW/v7/uv/9+7dixo1ziBwCUvwULFshkMumnn34y1y1fvlwmk0nvvvtukdetWrVKJpNJM2fONNfl5uZq5syZuuWWW1S1alV5enrqlltu0cyZM5Wbm1uu4wBQ+ZlMpmId5ZHQLMxbb711xSQrYM927typ2NhYHTx40NahACgnTrYOAED5uf/++/X888/r22+/VadOnazOHzx4UOvXr9fYsWPl5FTw62D58uUaMmSIatasqZEjRyooKEgHDx7Ue++9pw8//FBLlizRPffcU9FDAQCUg169eql69epavHixHnrooULbLF68WI6Ojho8eLAkKSsrS7169dLatWvVu3dvDR8+XA4ODkpKStKTTz6p5cuX67PPPpOHh0dFDgVAJfL+++9blBctWqRVq1ZZ1Tdr1qxC4nnrrbfk7e2t4cOHV8jz/VOnTp30559/ysXFxSbPb6/eeecd5efn2zqMSmHnzp2Ki4tTly5drFYtf/nll7YJCkCZIoELXMPuu+8+RUdHa/HixYUmcP/v//5PhmHo/vvvlyTt27dPDz74oBo2bKhvvvlGtWvXNrd98skn1bFjRz344IPatm2bGjZsWGHjAACUD1dXV917772aP3++jh49Kn9/f4vz58+f13//+191795dderUkSRFRUVp7dq1mjVrlsaOHWtu+9hjj2n27NkaO3asnnnmGc2ZM6dCxwKg8njggQcsyj/88INWrVplVf9P586dU5UqVcozNJtwcHCQm5ubrcOwO87OzrYO4ZrABwPAtYEtFAA7FhsbK5PJpL1792r48OGqUaOGqlevrsjISJ07d+6K1wcEBKhTp0768MMPC/1K6+LFi9WoUSOFhYVJkl577TWdO3dOb7/9tkXyVpK8vb2VmJiorKwsTZ06tWwGCACwuQceeED5+flasmSJ1bnPPvtMp0+fNn/Qd/jwYb333nvq1q2bRfL2ojFjxqhr16569913dfjw4XKPHcC1q0uXLrrpppu0adMmderUSVWqVNELL7wgScrOzlZMTIwaN24sV1dXBQQEaPz48crOzrboY/78+erWrZvq1KkjV1dXNW/e3OrDpcDAQO3YsUNr1641b93w9/1CMzIyNG7cOAUEBMjV1VWNGzfWlClTrFaGZmRkaPjw4apevbpq1KihYcOGKSMjo1hjLWwP3D179qh///7y9fWVm5ub6tWrp8GDB+v06dMW1/773/9W27ZtVaVKFXl5ealTp06Frrhct26d2rZtKzc3NzVs2FCLFi2yOH/y5Ek988wzatmypTw9PVWtWjX17NlTP//8s1VfxX39TSaTxo4dqw8++EDNmzeXu7u72rVrp+3bt0uSEhMT1bhxY7m5ualLly5WX/8vbA/c/Px8vfHGG2rZsqXc3NxUu3Zt9ejRw2J7oML8/d9T+/bt5e7urqCgIM2dO9eqbXp6ukaOHCkfHx+5ubmpdevWWrhwoUWbi/sbT5s2Ta+//roaNGggd3d3de7cWb/88ovVcxe2B21x9vj9/fffNXr0aN14441yd3dXrVq1NGDAAIvXasGCBRowYIAkqWvXrlZbkBT2/CUd49tvv61GjRrJ1dVVt9xyi3788cfLxg2g7LECF6gEBg4cqKCgIMXHx2vz5s169913VadOHU2ZMuWK195///165JFHtHLlSot9crdv365ffvlFEyZMMNd9+umnCgwMVMeOHQvtq1OnTgoMDNRnn3129YMCANiFTp06qV69elq8eLGioqIszi1evFhVqlRR3759JUlffPGF8vLyNHTo0CL7Gzp0qFavXq2kpKQit2UAgOI4ceKEevbsqcGDB+uBBx6Qj4+P8vPzddddd2ndunV65JFH1KxZM23fvl2vv/66fvvtN61YscJ8/Zw5c9SiRQvdddddcnJy0qeffqrRo0crPz9fY8aMkSQlJCTo8ccfl6enp1588UVJko+Pj6SCFb+dO3fWkSNHNGrUKNWvX1/ff/+9oqOjlZKSooSEBEmSYRi6++67tW7dOj366KNq1qyZ/vvf/2rYsGGlGndOTo4iIiKUnZ2txx9/XL6+vjpy5Ij+97//KSMjQ9WrV5ckxcXFKTY2Vu3bt9fEiRPl4uKiDRs26Ouvv9Ydd9xh7m/v3r269957NXLkSA0bNkzz5s3T8OHDFRISohYtWkiS9u/frxUrVmjAgAEKCgpSWlqaEhMT1blzZ+3cudP8DY2SvP6S9O233+qTTz4xv97x8fHq3bu3xo8fr7feekujR4/WqVOnNHXqVI0YMUJff/31ZV+bkSNHasGCBerZs6ceeughXbhwQd9++61++OEHhYaGXvbaU6dO6c4779TAgQM1ZMgQLVu2TI899phcXFw0YsQISdKff/6pLl26aO/evRo7dqyCgoL0wQcfaPjw4crIyNCTTz5p0eeiRYt05swZjRkzRufPn9cbb7yhbt26afv27eZ/R1fjxx9/1Pfff6/BgwerXr16OnjwoObMmaMuXbpo586dqlKlijp16qQnnnhCM2fO1AsvvGDeeqSoLUhKOsbFixfrzJkzGjVqlEwmk6ZOnap+/fpp//79rJIGKpIBwG7FxMQYkowRI0ZY1N9zzz1GrVq1zOUGDRoYvXr1KrSPkydPGq6ursaQIUMs6p9//nlDkrF7927DMAwjIyPDkGTcfffdl43prrvuMiQZmZmZpRgRAMBW5s+fb0gyfvzxR6tzzz77rMWcYBiGcfr0acPNzc1i/hg3bpwhydiyZUuRz7N582ZDkhEVFVWm8QO4do0ZM8b451vTzp07G5KMuXPnWtS///77hoODg/Htt99a1M+dO9eQZHz33XfmunPnzlk9V0REhNGwYUOLuhYtWhidO3e2ajtp0iTDw8PD+O233yzqn3/+ecPR0dE4dOiQYRiGsWLFCkOSMXXqVHObCxcuGB07djQkGfPnzy968IZhrF692pBkrF692jAMw9iyZYshyfjggw+KvGbPnj2Gg4ODcc899xh5eXkW5/Lz882PGzRoYEgyvvnmG3Ndenq64erqajz99NPmuvPnz1v1c+DAAcPV1dWYOHGiua4kr78kw9XV1Thw4IC5LjEx0ZBk+Pr6WryfiI6ONiRZtB02bJjRoEEDc/nrr782JBlPPPGE1evx9zEX5uK/p+nTp5vrsrOzjeDgYKNOnTpGTk6OYRiGkZCQYEgy/v3vf5vb5eTkGO3atTM8PT3NMR84cMCQZLi7uxuHDx82t92wYYMhyXjqqacsnruwf1//HJ9hFLxmMTEx5nJh/4bXr19vSDIWLVpkrvvggw8s/g39c+x/f/6SjrFWrVrGyZMnzW0//vhjQ5Lx6aefWj0XgPLDFgpAJfDoo49alDt27KgTJ04oMzPzitd6eXnpzjvv1CeffKKsrCxJBasElixZotDQUN1www2SpDNnzkiSqlatetn+Lp4vznMDACqHi/tOLl682Fz30Ucf6fz58+btE6TizRXMEwDKiqurqyIjIy3qPvjgAzVr1kxNmzbV8ePHzUe3bt0kSatXrza3dXd3Nz8+ffq0jh8/rs6dO2v//v1WWxEU5oMPPlDHjh3l5eVl8Vzh4eHKy8vTN998I0n6/PPP5eTkpMcee8x8raOjox5//PFSjfviCtuVK1cWuW3aihUrlJ+frwkTJsjBwfJtvclksig3b97c4ht2tWvX1o033qj9+/eb61xdXc395OXl6cSJE/L09NSNN96ozZs3m9uV5PWXpNtvv91im4CLW7f179/fYi65WP/3mP7po48+kslkUkxMjNW5f465ME5OTho1apS57OLiolGjRik9PV2bNm2SVPCz9PX11ZAhQ8ztnJ2d9cQTT+js2bNau3atRZ99+/ZV3bp1zeW2bdsqLCxMn3/++RXjKY6//xvOzc3ViRMn1LhxY9WoUcPi51ISJR3joEGD5OXlZS5f/Ld0uZ8VgLJHAheoBOrXr29RvjiBnjp1qljX33///crKytLHH38sSfr+++918OBBizflF/+AuvjmvCjFTfQCACqPVq1a6aabbtL//d//mesWL14sb29vRUREmOuKM1cwTwAoK3Xr1rW6AdOePXu0Y8cO1a5d2+K4uCghPT3d3Pa7775TeHi4PDw8VKNGDdWuXdu8j25xErh79uxRUlKS1XOFh4dbPNfvv/8uPz8/eXp6Wlx/4403lmrcQUFBioqK0rvvvmv+PTx79myLmPft2ycHBwc1b978iv39872EVPB+4u/vJfLz8/X666+rSZMmcnV1lbe3t2rXrq1t27ZZPG9JXv/CnvticjogIKDQ+su9v9m3b5/8/f1Vs2bNK465MP7+/vLw8LCouxj3xT1lf//9dzVp0sQqKX5xO4Lff//dor5JkyZWz3PDDTdY7edbWn/++acmTJhg3oP54s8lIyOjWP+GC1PSMV7te1EAZYM9cIFKwNHRsdB6wzCKdX3v3r1VvXp1LV68WPfdd58WL14sR0dHDR482NymevXq8vPz07Zt2y7b17Zt21S3bl1Vq1at+AMAANi9Bx54QM8//7x++ukn1atXT6tXr9aoUaPk5HTpz8WLb+62bdum4ODgQvu5OI8UJ6kAAJfz99WHF+Xn56tly5aaMWNGoddcTAzu27dPt99+u5o2baoZM2YoICBALi4u+vzzz/X6669b3YSsMPn5+erevbvGjx9f6PmLyb/yMH36dA0fPlwff/yxvvzySz3xxBOKj4/XDz/8oHr16pWor+K8l/jXv/6ll19+WSNGjNCkSZNUs2ZNOTg4aNy4cRavVXFf/ys999W+v6lMTCZToePKy8u74rWPP/645s+fr3Hjxqldu3aqXr26TCaTBg8eXKx/w2XhevpZAfaMBC5wHXB1ddW9996rRYsWKS0tTR988IG6desmX19fi3a9e/fWO++8o3Xr1qlDhw5W/Xz77bc6ePCgxVePAADXhiFDhig6OlqLFy9WgwYNlJeXZ/FNDUnq2bOnHB0d9f777xd5I7NFixbJyclJPXr0qIiwAVxnGjVqpJ9//lm33377Zb82/+mnnyo7O1uffPKJxQrCf37FXyr66/eNGjXS2bNnzStui9KgQQMlJyfr7NmzFqtwd+/efaXhXFbLli3VsmVLvfTSS/r+++912223ae7cuZo8ebIaNWqk/Px87dy5s8gP1Eriww8/VNeuXfXee+9Z1GdkZMjb29tcLu7rXx4aNWqklStX6uTJk6VahXv06FFlZWVZrML97bffJMm8zUODBg20bds25efnW6xQ3bVrl/n83+3Zs8fqeX777TeLbSO8vLwK3W7gnytdC/Phhx9q2LBhmj59urnu/PnzysjIsGhXkp9FSccIwD6whQJwnbj//vuVm5urUaNG6dixY1ZvyiXp2Weflbu7u0aNGqUTJ05YnDt58qQeffRRValSRc8++2xFhQ0AqCD169dXx44dtXTpUv373/9WUFCQ2rdvb9EmICBAkZGR+uqrrzRnzhyrPubOnauvv/5aI0eOLPEKMQAojoEDB+rIkSN65513rM79+eef5ns+XFw1+PdVgqdPn9b8+fOtrvPw8LBKiF18rvXr12vlypVW5zIyMnThwgVJ0p133qkLFy5Y/F7My8vTrFmzSja4v2RmZpr7vqhly5ZycHBQdna2pIK9Vx0cHDRx4kSrlZilWRnp6Ohodd0HH3ygI0eOWNQV9/UvD/3795dhGIqLi7M6V5wxX7hwQYmJieZyTk6OEhMTVbt2bYWEhEgq+FmmpqZq6dKlFtfNmjVLnp6e6ty5s0WfK1assHiNNm7cqA0bNqhnz57mukaNGmnXrl06duyYue7nn3/Wd999d8WYC/u5zJo1y2r17sWkdGH/jv+ppGMEYB9YgQtcI/bu3avJkydb1d98883q1auXOnfurHr16unjjz+Wu7u7+vXrZ9W2SZMmWrhwoe6//361bNlSI0eOVFBQkA4ePKj33ntPx48f1//93/+pUaNGFTEkAEA5mDdvnpKSkqzqn3zyST3wwAN65JFHdPToUb344ouFXv/6669r165dGj16tJKSkswrbVeuXKmPP/5YnTt3tlgpBABl6cEHH9SyZcv06KOPavXq1brtttuUl5enXbt2admyZVq5cqVCQ0N1xx13yMXFRX369NGoUaN09uxZvfPOO6pTp45SUlIs+gwJCdGcOXM0efJkNW7cWHXq1FG3bt307LPP6pNPPlHv3r01fPhwhYSEKCsrS9u3b9eHH36ogwcPytvbW3369NFtt92m559/XgcPHlTz5s21fPnyUu9R+vXXX2vs2LEaMGCAbrjhBl24cEHvv/++HB0d1b9/f0lS48aN9eKLL2rSpEnq2LGj+vXrJ1dXV/3444/y9/dXfHx8iZ6zd+/emjhxoiIjI9W+fXtt375d//nPf9SwYcNSvf7loWvXrnrwwQc1c+ZM7dmzRz169FB+fr6+/fZbde3aVWPHjr3s9f7+/poyZYoOHjyoG264QUuXLtXWrVv19ttvy9nZWZL0yCOPKDExUcOHD9emTZsUGBioDz/8UN99950SEhKs9ndv3LixOnTooMcee0zZ2dlKSEhQrVq1LLbdGDFihGbMmKGIiAiNHDlS6enpmjt3rlq0aHHFG3727t1b77//vqpXr67mzZtr/fr1+uqrr1SrVi2LdsHBwXJ0dNSUKVN0+vRpubq6qlu3bqpTp45VnyUdIwA7YQCwWzExMYYk49ixYxb18+fPNyQZBw4cMAzDMBo0aGBIKvQYOXKk+bpnn33WkGQMHDjwss+7bds2Y8iQIYafn5/h7Oxs+Pr6GkOGDDG2b99e5mMEAFSMi3NHUccff/xhnDx50nB1dTUkGTt37iyyr+zsbOP11183QkJCDA8PD6NKlSpGmzZtjISEBCMnJ6cCRwXgWjBmzBjjn29NO3fubLRo0aLQ9jk5OcaUKVOMFi1aGK6uroaXl5cREhJixMXFGadPnza3++STT4xWrVoZbm5uRmBgoDFlyhRj3rx5Fn9HG4ZhpKamGr169TKqVq1qSDI6d+5sPnfmzBkjOjraaNy4seHi4mJ4e3sb7du3N6ZNm2bx++7EiRPGgw8+aFSrVs2oXr268eCDDxpbtmwxJBnz58+/7PhXr15tSDJWr15tGIZh7N+/3xgxYoTRqFEjw83NzahZs6bRtWtX46uvvrK6dt68ecbNN99sfh06d+5srFq1yny+QYMGRq9evayu69y5s8U4z58/bzz99NOGn5+f4e7ubtx2223G+vXrrdqV5PWXZIwZM8bi2gMHDhiSjNdee63Q1+CDDz4w1w0bNsxo0KCBRbsLFy4Yr732mtG0aVPDxcXFqF27ttGzZ09j06ZNhb62fx9vixYtjJ9++slo166d4ebmZjRo0MB48803rdqmpaUZkZGRhre3t+Hi4mK0bNnS6mf493FMnz7dCAgIMFxdXY2OHTsaP//8s1Wf//73v42GDRsaLi4uRnBwsLFy5cpCxyfJiImJMZdPnTpljsXT09OIiIgwdu3aZTRo0MAYNmyYxbXvvPOO0bBhQ8PR0dHi31NhP8OSjvGf/hkngPJnMgx2ngYAAAAAANemLl266Pjx4/rll1/KpL+DBw8qKChIr732mp555pky6RMALoc9cAEAAAAAAADATpHABQAAAAAAAAA7RQIXAAAAAAAAAOyUXSRwZ8+ercDAQLm5uSksLEwbN24s1nVLliyRyWRS3759LeoNw9CECRPk5+cnd3d3hYeHa8+ePeUQOQAAAAAAsGdr1qwps/1vJSkwMFCGYbD/LYAKY/ME7tKlSxUVFaWYmBht3rxZrVu3VkREhNLT0y973cGDB/XMM8+oY8eOVuemTp2qmTNnau7cudqwYYM8PDwUERGh8+fPl9cwAAAAAAAAAKDMmQzDMGwZQFhYmG655Ra9+eabkqT8/HwFBATo8ccf1/PPP1/oNXl5eerUqZNGjBihb7/9VhkZGVqxYoWkgtW3/v7+evrpp82fhp0+fVo+Pj5asGCBBg8eXCHjAgAAAAAAAICr5WTLJ8/JydGmTZsUHR1trnNwcFB4eLjWr19f5HUTJ05UnTp1NHLkSH377bcW5w4cOKDU1FSFh4eb66pXr66wsDCtX7++0ARudna2srOzzeX8/HydPHlStWrVkslkupohAgDKiWEYOnPmjPz9/eXgYJsvlDB/AEDlY+v5g7kDAConW88fuL7ZNIF7/Phx5eXlycfHx6Lex8dHu3btKvSadevW6b333tPWrVsLPZ+ammru4599Xjz3T/Hx8YqLiyth9AAAe/DHH3+oXr16Nnlu5g8AqLxsNX8wdwBA5WbL9x+4ftk0gVtSZ86c0YMPPqh33nlH3t7eZdZvdHS0oqKizOXTp0+rfv36+uOPP1StWrUyex4AQNnJzMxUQECAqlatarMYmD8AoPKx9fzB3AEAlZOt5w9c32yawPX29pajo6PS0tIs6tPS0uTr62vVft++fTp48KD69OljrsvPz5ckOTk5affu3ebr0tLS5OfnZ9FncHBwoXG4urrK1dXVqr5atWr8EQUAds6WXzdl/gCAystW8wdzBwBUbmx3A1uw6aYdLi4uCgkJUXJysrkuPz9fycnJateunVX7pk2bavv27dq6dav5uOuuu9S1a1dt3bpVAQEBCgoKkq+vr0WfmZmZ2rBhQ6F9AgAAAAAAAIC9svkWClFRURo2bJhCQ0PVtm1bJSQkKCsrS5GRkZKkoUOHqm7duoqPj5ebm5tuuukmi+tr1KghSRb148aN0+TJk9WkSRMFBQXp5Zdflr+/v/r27VtRwwIAAAAAAACAq2bzBO6gQYN07NgxTZgwQampqQoODlZSUpL5JmSHDh0q8d39xo8fr6ysLD3yyCPKyMhQhw4dlJSUJDc3t/IYAgAAAAAAAACUC5NhGIatg7A3mZmZql69uk6fPs0+VABgp+zxd7U9xgQAsGRvv6vtLR4AQOH4fQ1bsukeuAAAAAAAAACAopHABQAAAAAAAAA7RQIXAAAAAAAAAOwUCVwAAAAAAAAAsFMkcAEAAAAAAADATpHABQAAAAAAAAA7RQIXAAAAAAAAAOwUCVwAAAAAAAAAsFMkcAEAAAAAAADATpHABQAAAAAAAAA7RQIXAAAAAAAAAOyUk60DuF6kpKQoJSXFqt7Pz09+fn42iAgAAAAAAACAvWMFbgVJTExUSEiI1ZGYmGjr0AAAAAAAAADYKVbgVpBRo0ape/fu6tChgyRp3bp1cnd3Z/UtAAAAAAAAgCKRwK0gfn5+qlatmrkcHBwsDw8PG0YEAAAAAAAAwN6xhQIAAAAAAAAA2ClW4JYjU79Yy4oLOeaHnkNekZxcLE4byy+156ZnAAAAAAAAAFiBa6e46RkAAAAAAAAAVuDaKW56BgAAAAAAAMAuVuDOnj1bgYGBcnNzU1hYmDZu3Fhk2+XLlys0NFQ1atSQh4eHgoOD9f7771u0GT58uEwmk8XRo0eP8h7G5Z0/I2WkXipnpEoZKQX1hfDz81NwcLC5HBwcrDZt2pDABQAAAAAAAK4jNl+Bu3TpUkVFRWnu3LkKCwtTQkKCIiIitHv3btWpU8eqfc2aNfXiiy+qadOmcnFx0f/+9z9FRkaqTp06ioiIMLfr0aOH5s+fby67urpWyHiKdGCTtGvtpfK3f8XWtLPUrItNQgIAAAAAAABg32yewJ0xY4YefvhhRUZGSpLmzp2rzz77TPPmzdPzzz9v1b5Lly4W5SeffFILFy7UunXrLBK4rq6u8vX1LdfYSyQoRPK70brezbPiYwEAAAAAAABQKdg0gZuTk6NNmzYpOjraXOfg4KDw8HCtX7/+itcbhqGvv/5au3fv1pQpUyzOrVmzRnXq1JGXl5e6deumyZMnq1atWoX2k52drezsbHM5MzOzlCO6DLeqBQcA4JpRIfMHAOCawtwBAABKyqZ74B4/flx5eXny8fGxqPfx8VFqamoRV0mnT5+Wp6enXFxc1KtXL82aNUvdu3c3n+/Ro4cWLVqk5ORkTZkyRWvXrlXPnj2Vl5dXaH/x8fGqXr26+QgICCibAQIArmnMHwCAkmLuAAAAJWUXNzErqapVq2rr1q368ccf9corrygqKkpr1qwxnx88eLDuuusutWzZUn379tX//vc//fjjjxZt/i46OlqnT582H3/88UfFDAQAUKkxfwAASoq5AwAAlJRNt1Dw9vaWo6Oj0tLSLOrT0tIuu3+tg4ODGjduLEkKDg7Wr7/+qvj4eKv9cS9q2LChvL29tXfvXt1+++1W511dXW1/kzMAQKXD/AEAKCnmDgAAUFI2XYHr4uKikJAQJScnm+vy8/OVnJysdu3aFbuf/Px8i32k/unw4cM6ceKE/Pz8ripeAAAAAAAAAKhINl2BK0lRUVEaNmyYQkND1bZtWyUkJCgrK0uRkZGSpKFDh6pu3bqKj4+XVLBnVGhoqBo1aqTs7Gx9/vnnev/99zVnzhxJ0tmzZxUXF6f+/fvL19dX+/bt0/jx49W4cWNFRETYbJzFYXr6U8uK3PPmh57Rn0vObhanjel9KiIsAAAAAAAAADZi8wTuoEGDdOzYMU2YMEGpqakKDg5WUlKS+cZmhw4dkoPDpYXCWVlZGj16tA4fPix3d3c1bdpU//73vzVo0CBJkqOjo7Zt26aFCxcqIyND/v7+uuOOOzRp0iS+qgQAAAAAAACgUrF5AleSxo4dq7FjxxZ67p83Hps8ebImT55cZF/u7u5auXJlWYYHAAAAAAAAADZh0z1wAQAAAAAAAABFI4ELAAAAAAAAAHaKBC4AAAAAAAAA2CkSuAAAAAAAAABgp0jgAgAAAAAAAICdcrJ1ACjC2ZPS6dRL5fT9kpOr5OEleda0XVwAAAAAAAAAKgwJXHu1LUn6Ycml8tLnC/5762Cp/X22iQkAAAAAAABAhSKBa69a9ZAahVnXe3hVfCwAAAAAAAAAbIIErr3yrMlWCQAAAAAAAMB1jpuYAQAAAAAAAICdIoELAAAAAAAAAHaKBC4AAAAAAAAA2CkSuAAAAAAAAABgp0jgAgAAAAAAAICdIoELAAAAAAAAAHaKBC4AAAAAAAAA2CkSuAAAAAAAAABgp0jgAgAAAAAAAICdIoELAAAAAAAAAHaKBC4AAAAAAAAA2Cm7SODOnj1bgYGBcnNzU1hYmDZu3Fhk2+XLlys0NFQ1atSQh4eHgoOD9f7771u0MQxDEyZMkJ+fn9zd3RUeHq49e/aU9zAAAAAAAAAAoEzZPIG7dOlSRUVFKSYmRps3b1br1q0VERGh9PT0QtvXrFlTL774otavX69t27YpMjJSkZGRWrlypbnN1KlTNXPmTM2dO1cbNmyQh4eHIiIidP78+YoaFgAAAAAAAABcNZsncGfMmKGHH35YkZGRat68uebOnasqVapo3rx5hbbv0qWL7rnnHjVr1kyNGjXSk08+qVatWmndunWSClbfJiQk6KWXXtLdd9+tVq1aadGiRTp69KhWrFhRgSMDAAAAAAAAgKtj0wRuTk6ONm3apPDwcHOdg4ODwsPDtX79+itebxiGkpOTtXv3bnXq1EmSdODAAaWmplr0Wb16dYWFhRXZZ3Z2tjIzMy0OAACuhPkDAFBSzB0AAKCkbJrAPX78uPLy8uTj42NR7+Pjo9TU1CKvO336tDw9PeXi4qJevXpp1qxZ6t69uySZrytJn/Hx8apevbr5CAgIuJphAQCuE8wfAICSYu4AAAAlZfMtFEqjatWq2rp1q3788Ue98sorioqK0po1a0rdX3R0tE6fPm0+/vjjj7ILFgBwzWL+AACUFHMHAAAoKSdbPrm3t7ccHR2VlpZmUZ+WliZfX98ir3NwcFDjxo0lScHBwfr1118VHx+vLl26mK9LS0uTn5+fRZ/BwcGF9ufq6ipXV9erHA0A4HrD/AEAKCnmDgAAUFI2XYHr4uKikJAQJScnm+vy8/OVnJysdu3aFbuf/Px8ZWdnS5KCgoLk6+tr0WdmZqY2bNhQoj4BAAAAAAAAwNZsugJXkqKiojRs2DCFhoaqbdu2SkhIUFZWliIjIyVJQ4cOVd26dRUfHy+pYM+o0NBQNWrUSNnZ2fr888/1/vvva86cOZIkk8mkcePGafLkyWrSpImCgoL08ssvy9/fX3379rXVMAEAAAAAAACgxGyewB00aJCOHTumCRMmKDU1VcHBwUpKSjLfhOzQoUNycLi0UDgrK0ujR4/W4cOH5e7urqZNm+rf//63Bg0aZG4zfvx4ZWVl6ZFHHlFGRoY6dOigpKQkubm5Vfj4AAAAAAAAAKC0TIZhGLYOwt5kZmaqevXqOn36tKpVq1bqfkz9Ykt2QVBIiZob0/uUrH8AuIaU1e/qsmSPMQEALNnb72p7iwcAUDh+X8OWbLoHLgAAAAAAAACgaCRwAQAAAAAAAMBOkcAFAAAAAAAAADtFAhcAAAAAAAAA7BQJXAAAAAAAAACwUyRwAQAAAAAAAMBOkcAFAAAAAAAAADtFAhcAAAAAAAAA7BQJXAAAAAAAAACwUyRwAQAAAAAAAMBOkcAFAAAAAAAAADtFAhcAAAAAAAAA7BQJXAAAAAAAAACwUyRwAQAAAAAAAMBOkcAFAAAAAAAAADtFAhcAAAAAAAAA7JSTrQPA9W3ZsmUlaj9w4MByigQAAAAAAACwP6zABQAAAAAAAAA7RQIXAAAAAAAAAOwUWygAAAAAwHUsJSVFKSkpVvV+fn7y8/OzQUQAAODv7CKBO3v2bL322mtKTU1V69atNWvWLLVt27bQtu+8844WLVqkX375RZIUEhKif/3rXxbthw8froULF1pcFxERoaSkpPIbBAAAAABUQomJiYqLi7Oqj4mJUWxsbMUHBACVkGEYunDhgvLy8mwdCioJR0dHOTk5yWQyXbFtqRK4q1evVteuXUtzqZWlS5cqKipKc+fOVVhYmBISEhQREaHdu3erTp06Vu3XrFmjIUOGqH379nJzc9OUKVN0xx13aMeOHapbt665XY8ePTR//nxz2dXVtUziBQAAAIBryahRo9S9e3d16NBBkrRu3Tq5u7uz+hYAiiknJ0cpKSk6d+6crUNBJVOlShX5+fnJxcXlsu1KlcDt0aOH6tWrp8jISA0bNkwBAQGlClKSZsyYoYcffliRkZGSpLlz5+qzzz7TvHnz9Pzzz1u1/89//mNRfvfdd/XRRx8pOTlZQ4cONde7urrK19e31HEBAAAAwPXAz89P1apVM5eDg4Pl4eFhw4gAoPLIz8/XgQMH5OjoKH9/f7m4uBRrRSWub4ZhKCcnR8eOHdOBAwfUpEkTOTgUfauyUiVwjxw5ovfff18LFy5UXFycunXrppEjR6pv375XzBj/XU5OjjZt2qTo6GhznYODg8LDw7V+/fpi9XHu3Dnl5uaqZs2aFvVr1qxRnTp15OXlpW7dumny5MmqVatWoX1kZ2crOzvbXM7MzCz2GAAA1y/mDwBASTF3AMC1JScnR/n5+QoICFCVKlVsHQ4qEXd3dzk7O+v3339XTk6O3NzcimxbdGr3Mry9vfXUU09p69at2rBhg2644QaNHj1a/v7+euKJJ/Tzzz8Xq5/jx48rLy9PPj4+FvU+Pj5KTU0tVh/PPfec/P39FR4ebq7r0aOHFi1apOTkZE2ZMkVr165Vz549i9yHJD4+XtWrVzcfV7OiGABw/WD+AACUFHMHAFybLrd6EihKcf/dXPVNzNq0aSNfX1/VqlVLr776qubNm6e33npL7dq109y5c9WiRYurfYoivfrqq1qyZInWrFljkaUePHiw+XHLli3VqlUrNWrUSGvWrNHtt99u1U90dLSioqLM5czMTP6QAgBcEfMHULktW7asxNcMHDiwHCLB9YS5AwAAlFSpE7i5ubn6+OOPNW/ePK1atUqhoaF68803NWTIEB07dkwvvfSSBgwYoJ07dxbZh7e3txwdHZWWlmZRn5aWdsX9a6dNm6ZXX31VX331lVq1anXZtg0bNpS3t7f27t1baALX1dWVm5wBAEqM+QMAUFL2MneYnv7UsiL3vPmhZ/TnkrPl1ziN6X0qIiwAAFCIUq3vfvzxx+Xn56dRo0bphhtu0JYtW7R+/Xo99NBD8vDwUGBgoKZNm6Zdu3Zdth8XFxeFhIQoOTnZXJefn6/k5GS1a9euyOumTp2qSZMmKSkpSaGhoVeM9/Dhwzpx4gR3UQUAAAAAAADKwJo1a2QymZSRkWHrUAoVGBiohISEIs8fPHhQJpNJW7durbCYSqtUK3B37typWbNmqV+/fkV+euzt7a3Vq1dfsa+oqCgNGzZMoaGhatu2rRISEpSVlaXIyEhJ0tChQ1W3bl3Fx8dLkqZMmaIJEyZo8eLFCgwMNO+V6+npKU9PT509e1ZxcXHq37+/fH19tW/fPo0fP16NGzdWREREaYYLAAAAAJVGSkqKUlJSrOr9/PxY1AIAFcjUL7ZCn89YXrLnGz58uBYuXChJcnJyUs2aNdWqVSsNGTJEw4cPv+L+rO3bt1dKSoqqV69e2pDNpk+frlmzZiktLU3169fX008/rUceeeSq+72cgIAApaSkyNvbu1yfpyyUagVuTEyMBgwYYJW8vXDhgr755htJBT/4zp07X7GvQYMGadq0aZowYYKCg4O1detWJSUlmW9sdujQIYs/PubMmaOcnBzde++95j9A/Pz8NG3aNEmSo6Ojtm3bprvuuks33HCDRo4cqZCQEH377bd28VUlAAAAAChPiYmJCgkJsToSExNtHRoAwM706NFDKSkpOnjwoL744gt17dpVTz75pHr37q0LFy4UeV1ubq5cXFzk6+srk8l0VTF88803euaZZ/T000/r119/1XvvvafatWtfVZ/F4ejoKF9fXzk5XfUtwspdqRK4Xbt21cmTJ63qT58+ra5du5a4v7Fjx+r3339Xdna2NmzYoLCwMPO5NWvWaMGCBebywYMHZRiG1REbGytJcnd318qVK5Wenq6cnBwdPHhQb7/9tjkhjIqTkpKizZs3Wx2FrQYAAAAAUDZGjRqldevWmcvr1q3Tpk2bNGrUqMIvOHtSSt9/qZy+X0rbV1APALimubq6ytfXV3Xr1lWbNm30wgsv6OOPP9YXX3xhkY8zmUyaM2eO7rrrLnl4eOiVV16x2kJhwYIFqlGjhlasWKEmTZrIzc1NERER+uOPPy4bg4ODgxwdHTVy5EgFBgaqQ4cOuueee64Y+8V8YP369eXq6ip/f3898cQTFm3OnTunESNGqGrVqqpfv77efvtt87l/bqFwcTyfffaZWrVqJTc3N91666365ZdfivdilqNSJXANwyg0u37ixAl5eHhcdVC4NvDJPwAAAFDx/Pz8FBwcbC4HBwerTZs2RW+fsC1JWvr8pfLS56X/PFVQDwC47nTr1k2tW7fW8uXLLepjY2N1zz33aPv27RoxYkSh1547d06vvPKKFi1apO+++04ZGRkaPHjwZZ8vODhYdevW1ejRo5Wfn1/sOD/66CO9/vrrSkxM1J49e7RixQq1bNnSos306dMVGhqqLVu2aPTo0Xrssce0e/fuy/b77LPPavr06frxxx9Vu3Zt9enTR7m5ucWOqzyUaI1wv379JBVk3YcPH26xJUFeXp62bdum9u3bl22EqLRGjRql7t27q0OHDpIKPvl3d3dn3y0AAACgjFnts3ghx/zQc8grkpOL5fmgkEuPW/WQGoXJiodXmcUHAKhcmjZtqm3btlnU3XfffeZ7VknS/v37/3mZcnNz9eabb5q/Xb9w4UI1a9ZMGzduVNu2ba3a5+fnq2/fvmrdurUyMjJ03333adGiRXJxKZi3WrZsqWHDhumZZ56xuvbQoUPy9fVVeHi4nJ2dVb9+favnuPPOOzV69GhJ0nPPPafXX39dq1ev1o033ljk2GNiYtS9e3dz/PXq1dN///tfDRw4sMhryluJErgXNyU2DENVq1aVu7u7+ZyLi4tuvfVWPfzww2UbISotPz8/VatWzVwODg5mhTYAAABgbzxrFhwAAPylsG/fh4aGXvE6Jycn3XLLLeZy06ZNVaNGDf3666+FJnCTkpL03Xff6ciRI/Lw8FDv3r3Vp08fLV++XI6Ojtq7d686duxY6HMNGDBACQkJatiwoXr06KE777xTffr0sdjTtlWrVubHJpNJvr6+Sk9Pv+wY2rVrZ35cs2ZN3Xjjjfr111+vOPbyVKIE7vz58yVJgYGBeuaZZ0jGwYrp6U8tK3LPmx96Rn8uObtZnF5ayAf9AAAAAK7C+TPS2VOXyhmpkpOz5OYpuVW1XVwAgErj119/VVBQkEVdeeQBt23bpvr166tmzYIPElesWKE77rhDt99+u/r27auGDRta3Cvr7wICArR792599dVXWrVqlUaPHq3XXntNa9eulbOzsySZ/3uRyWQq0TYN9qJUt1mLiYkp6zhQCaSkpBR6AzI/Pz+2RQAAAADsxYFN0q61l8rfFizEUdPOUrMuNgkJAFB5fP3119q+fbueeuqpEl974cIF/fTTT+bVtrt371ZGRoaaNWtWaPu6devqwIEDOnz4sOrVqycPDw99/vnn6tq1q6Kjo6324f0nd3d39enTR3369NGYMWPUtGlTbd++XW3atClx7Bf98MMPql+/viTp1KlT+u2334qMv6IUO4Hbpk0bJScny8vLSzfffHOhNzG7aPPmzWUSHOxLYmKi4uLirOpjYmIUGxtrfcHZk9Lp1Evl9P2Sk2vBXlp8RQsAAAAoH0Ehkl8he/u5eVZ8LAAAu5adna3U1FTl5eUpLS1NSUlJio+PV+/evTV06NAS9+fs7KzHH39cM2fOlJOTk8aOHatbb7210O0TJKl///6Ki4tTr169NH36dAUGBuqnn37SyZMn5eHhofnz5+vuu++Wg4OD1bULFixQXl6ewsLCVKVKFf373/+Wu7u7GjRoUOK4/27ixImqVauWfHx89OKLL8rb21t9+/a9qj6vVrETuHfffbf5pmW2DhoVw+pGCOfPSB0jL32C3zFScnJW3MYzirvY9u83Q9iWJP2w5FL54p1tbx0stb+vfIIGAAAArnduVdkqAQDsgLE81tYhXFFSUpL8/Pzk5OQkLy8vtW7dWjNnztSwYcMKTZpeSZUqVfTcc8/pvvvu05EjR9SxY0e99957l23//fff64UXXlBkZKSOHTumFi1aaNKkSQoNDVVYWJjGjRunmTNnWl1bo0YNvfrqq4qKilJeXp5atmypTz/9VLVq1Spx3H/36quv6sknn9SePXsUHBysTz/91HxTNVspdgL379smsIUCioW72QIAAAAAANilBQsWaMGCBcVqaxiGVV2XLl0Kre/Xr5/69etX7Djq1Kmjd999t9BzmZmZRV7Xt2/fyy4yPXjwoFXd1q1bzY8DAwMLjb9Dhw765ZdfiuzXFkq1By6uUyXdS4u72QIAAAAAAABXpdgJXC8vr8vue/t3J0+eLHVAsGPspQUAAAAAAABUqGIncBMSEsoxDFQK7KUFAAAAAACAQgwfPlzDhw+3dRilVtSWEPag2AncYcOGlWccAAAAAAAAAIB/KHYCNzMzU9WqVTM/vpyL7QAAAAAAAAAApVeiPXBTUlJUp04d1ahRo9D9cA3DkMlkUl5eXpkGCQAAAAAAAADXo2IncL/++mvVrFlTkrR69epyCwgAAAAAAAAAUKDYCdzOnTsX+hgAAAAAAAAAUD6KncD9p1OnTum9997Tr7/+Kklq3ry5IiMjzat0AQAAgLKSkpKilJQUq3o/Pz/5+fnZICIAAACgYpQqgfvNN9+oT58+ql69ukJDQyVJM2fO1MSJE/Xpp5+qU6dOZRokAAAArm+JiYmKi4uzqo+JiVFsbGzFBwQAAHAFpqc/rdDnM6b3qdDnK44uXbooODhYCQkJFfq8w4cPV0ZGhlasWFFkm8DAQI0bN07jxo2rsLhKy6E0F40ZM0aDBg3SgQMHtHz5ci1fvlz79+/X4MGDNWbMmLKOEQAAANe5UaNGad26debyunXrtGnTJo0aNcqGUQEAAFRew4cPl8lk0qOPPmp1bsyYMTKZTBo+fHix+lqzZo1MJpMyMjLKNshy9OOPP+qRRx6xdRjFUqoE7t69e/X000/L0dHRXOfo6KioqCjt3bu3xP3Nnj1bgYGBcnNzU1hYmDZu3Fhk23feeUcdO3aUl5eXvLy8FB4ebtXeMAxNmDBBfn5+cnd3V3h4uPbs2VPiuAAAAGA7pn6x5sN/TKI6TPnMfK7DlM8UMvkT+Y9JNLcBAABAyQQEBGjJkiX6888/zXXnz5/X4sWLVb9+fRtGVrScnJwy6ad27dqqUqVKmfRV3kqVwG3Tpo1579u/+/XXX9W6desS9bV06VJFRUUpJiZGmzdvVuvWrRUREaH09PRC269Zs0ZDhgzR6tWrtX79egUEBOiOO+7QkSNHzG2mTp2qmTNnau7cudqwYYM8PDwUERGh8+fPl2ygAAAAsA/nz0gZqZfKGalSRkpBPQAAAEqlTZs2CggI0PLly811y5cvV/369XXzzTeb67Kzs/XEE0+oTp06cnNzU4cOHfTjjz9Kkg4ePKiuXbtKkry8vKxW7ubn52v8+PGqWbOmfH19rba/ysjI0EMPPaTatWurWrVq6tatm37++Wfz+djYWAUHB+vdd99VUFCQ3NzcJEkffvihWrZsKXd3d9WqVUvh4eHKysqy6HvatGny8/NTrVq1NGbMGOXm5prPBQYGWmztYDKZNGfOHPXs2VPu7u5q2LChPvzww9K9sGWs2Ancbdu2mY8nnnhCTz75pKZNm6Z169Zp3bp1mjZtmp566ik99dRTJQpgxowZevjhhxUZGanmzZtr7ty5qlKliubNm1do+//85z8aPXq0goOD1bRpU7377rvKz89XcnKypILVtwkJCXrppZd09913q1WrVlq0aJGOHj162X0vAAAAYMcObJK+nX+p/O18afXbBfUAAAAotREjRmj+/Et/Z82bN0+RkZEWbcaPH6+PPvpICxcu1ObNm9W4cWNFRETo5MmTCggI0EcffSRJ2r17t1JSUvTGG2+Yr124cKE8PDy0YcMGTZ06VRMnTtSqVavM5wcMGKD09HR98cUX2rRpk9q0aaPbb79dJ0+eNLfZu3evPvroIy1fvlxbt25VSkqKhgwZohEjRujXX3/VmjVr1K9fPxmGYb5m9erV2rdvn1avXq2FCxdqwYIFWrBgwWVfi5dffln9+/fXzz//rPvvv1+DBw8udBFrRSv2TcyCg4NlMpksXojx48dbtbvvvvs0aNCgYvWZk5OjTZs2KTo62lzn4OCg8PBwrV+/vlh9nDt3Trm5uapZs6Yk6cCBA0pNTVV4eLi5TfXq1RUWFqb169dr8ODBVn1kZ2crOzvbXM7MzCzWcwMArm/MH0AFCgqR/G60rnfzrPhYgKvA3AEAsDcPPPCAoqOj9fvvv0uSvvvuOy1ZskRr1qyRJGVlZWnOnDlasGCBevbsKalgi9NVq1bpvffe07PPPmvOy9WpU0c1atSw6L9Vq1aKiYmRJDVp0kRvvvmmkpOT1b17d61bt04bN25Uenq6XF1dJRWsml2xYoU+/PBD8x61OTk5WrRokWrXri1J2rx5sy5cuKB+/fqpQYMGkqSWLVtaPK+Xl5fefPNNOTo6qmnTpurVq5eSk5P18MMPF/laDBgwQA899JAkadKkSVq1apVmzZqlt956q1SvbVkpdgL3wIEDZf7kx48fV15ennx8fCzqfXx8tGvXrmL18dxzz8nf39+csE1NTTX38c8+L577p/j4+ELvagwAwOUwfwAVyK1qwQFUcswdAAB7U7t2bfXq1UsLFiyQYRjq1auXvL29zef37dun3Nxc3XbbbeY6Z2dntW3btlirU1u1amVR9vPzM2+d+vPPP+vs2bOqVauWRZs///xT+/btM5cbNGhgTt5KUuvWrXX77berZcuWioiI0B133KF7771XXl5e5jYtWrSwuH+Xn5+ftm/fftlY27VrZ1XeunXrFcdY3oqdwL2YzbYnr776qvkTgYv7X5RGdHS0oqKizOXMzEwFBASURYjlatmyZSVqP3DgwHKKBACuT5V1/gAA2A5zB1D58V4c16IRI0Zo7NixkqTZs2eXad/Ozs4WZZPJpPz8fEnS2bNn5efnZ17t+3d/X8nr4eFhcc7R0VGrVq3S999/ry+//FKzZs3Siy++qA0bNigoKOiKz1vZFDuBW5idO3fq0KFDVnd/u+uuu4p1vbe3txwdHZWWlmZRn5aWJl9f38teO23aNL366qv66quvLDL5F69LS0uTn5+fRZ/BwcGF9uXq6mpepg0AQHExfwD2KyUlRSkpKVb1fn5+Fn8jAhWNuQMAYI969OihnJwcmUwmRUREWJxr1KiRXFxc9N1335kXeObm5urHH3/UuHHjJEkuLi6SpLy8vBI9b5s2bZSamionJycFBgaW6FqTyaTbbrtNt912myZMmKAGDRrov//9r8UHpSX1ww8/aOjQoRblv9/MzVZKlcDdv3+/7rnnHm3fvt1iX1yTySSp+D8sFxcXhYSEKDk5WX379pUk8w3JLmb9CzN16lS98sorWrlypUJDQy3OBQUFydfXV8nJyeaEbWZmpjZs2KDHHnushCMFAABAZZSYmFjo19RjYmKs7nwMAABwvXN0dDRvh/D3bQekgtWvjz32mHmv2/r162vq1Kk6d+6cRo4cKangm/smk0n/+9//dOedd8rd3V2enle+V0F4eLjatWunvn37aurUqbrhhht09OhRffbZZ7rnnnus8n4XbdiwQcnJybrjjjtUp04dbdiwQceOHVOzZs2u6nX44IMPFBoaqg4dOug///mPNm7cqPfee++q+iwLpUrgPvnkkwoKClJycrKCgoK0ceNGnThxQk8//bSmTZtWor6ioqI0bNgwhYaGqm3btkpISFBWVpb5bndDhw5V3bp1FR8fL0maMmWKJkyYoMWLFyswMNC8r62np6c8PT1lMpk0btw4TZ48WU2aNFFQUJBefvll+fv7m5PEAAAAuLaNGjVK3bt3V4cOHSRJ69atk7u7O6tvAQBAhTGm97F1CCVSrVq1Is+9+uqrys/P14MPPqgzZ84oNDRUK1euNO85W7duXcXFxen5559XZGSkhg4dqgULFlzxOU0mkz7//HO9+OKLioyM1LFjx+Tr66tOnTpZ3d/qn7F+8803SkhIUGZmpho0aKDp06ebb7JWWnFxcVqyZIlGjx4tPz8//d///Z+aN29+VX2WhVIlcNevX6+vv/5a3t7ecnBwkIODgzp06KD4+Hg98cQT2rJlS7H7GjRokI4dO6YJEyYoNTVVwcHBSkpKMv+QDh06JAcHB3P7OXPmKCcnR/fee69FP39fTTF+/HhlZWXpkUceUUZGhjp06KCkpKSr2icXAAAA9s309KeWFbnnzQ87LD0qObtJOmKuWxpWQYEBAADYoSslWFesWGF+7ObmppkzZ2rmzJlFtn/55Zf18ssvW9QVtrft3/uVpKpVq16279jYWKtvUDVr1kxJSUlFxlLY2BISEizKBw8etGrj7++vL7/8ssh+baVUCdy8vDxVrVpwF2Bvb28dPXpUN954oxo0aKDdu3eXuL+xY8cWuWXCP3/Qhb24/2QymTRx4kRNnDixxLEAAAAAAAAAgL0oVQL3pptu0s8//6ygoCCFhYVp6tSpcnFx0dtvv62GDRuWdYwAAABAyZw9KZ1OvVRO3y85uUoeXpJnTdvFBSvczR0AAODySpXAfemll5SVlSVJmjhxonr37q2OHTuqVq1aWrp0aZkGCAAAAJTYtiTphyWXykufL/jvrYOl9vfZJiYAAADYLcMwbB1CkUqVwI2IiDA/bty4sXbt2qWTJ0/Ky8tLJpOpzIIDAAAASqVVD6lRIZvcenhVfCwAAADAVShVAvfv/vjjD0lSQEDAVQcDAAAAlAnPmmyVAAAAgGuCQ2kuunDhgl5++WVVr15dgYGBCgwMVPXq1fXSSy8pNze3rGMEAAAAAAAAgOtSqVbgPv7441q+fLmmTp2qdu3aSZLWr1+v2NhYnThxQnPmzCnTIAEAAAAAAADgelSqBO7ixYu1ZMkS9ezZ01zXqlUrBQQEaMiQISRwAQAAAAAVJiUlRSkpKVb1fn5+8vPzs0FEAACUnVJtoeDq6qrAwECr+qCgILm4uFxtTAAAAAAAFFtiYqJCQkKsjsTERFuHBgDAVSvVCtyxY8dq0qRJmj9/vlxdXSVJ2dnZeuWVVzR27NgyDRAAAAAAgH8yPf3ppcLZIGnQq9LS5wvKg16VnFwVl+KluL/aGdP72CBKANezZcuWVejzDRw4sEKfDxWn2Ancfv36WZS/+uor1atXT61bt5Yk/fzzz8rJydHtt99ethECAADgqpT0q8Vbt27Vjh07rOpbtGih4ODg8ggRAAAAFWz48OFauHCh4uPj9fzzz5vrV6xYoXvuuUeGYZS679jYWK1YsUJbt24tg0ivbMGCBRo3bpwyMjIq5Pmu5ODBgwoKCtKWLVvK5O/nYidwq1evblHu37+/RTkgIOCqgwEAAEDZMPWLvVTYvlLa+4N1o8a3Si0jCh4HhVyqXxotHbFO4KpuC2lQvCRWsgEoXyXe03ZbkvTDkkvliytxbx0stb+vnKIEgMrPzc1NU6ZM0ahRo+Tl5VXhz5+bmytnZ+cKf97KptgJ3Pnz55dnHAAAALAXXR+WThyyrq9Vv+JjAXBdSkxMVFxcnFV9TEyMYmNjrS9o1UNqFGZd71HxyQgAqEzCw8O1d+9excfHa+rUqUW2++ijjzRhwgTt3btXfn5+evzxx/X0008X2nbBggXm3+Emk0lSQV5x+PDhMplMeuutt/TFF18oOTlZzz77rGJjY/Xxxx8rLi5OO3fulL+/v4YNG6YXX3xRTk4FqcsZM2Zo/vz52r9/v2rWrKk+ffpo6tSp8vT01Jo1axQZGWnxfBfni8DAQD300EP67bfftHz5ctWqVUuzZs1Su3bt9NBDDyk5OVkNGzbUvHnzFBoaah7DunXrFB0drZ9++kne3t665557FB8fLw8PD0lSYGCgHnnkEe3du1cffPCBvLy89NJLL+mRRx6RVHCfMEm6+eabJUmdO3fWmjVrSvUzkkq5B+5Fx44d0+7duyVJN954o2rXrn013QEAAKA8NGkvBbSyrnfzLLx9nYYFBwDYyKhRo9S9e3d16NBBUsEbaXd398JX30qSZ82C4zJKuhcle0kCuB44OjrqX//6l+677z498cQTqlevnlWbTZs2aeDAgYqNjdWgQYP0/fffa/To0apVq5aGDx9u1X7QoEH65ZdflJSUpK+++kqS5Tf7Y2Nj9eqrryohIUFOTk769ttvNXToUM2cOVMdO3bUvn37zInQmJgYSZKDg4NmzpypoKAg7d+/X6NHj9b48eP11ltvqX379kpISNCECRPMeUpPz0t/577++uv617/+pZdfflmvv/66HnzwQbVv314jRozQa6+9pueee05Dhw7Vjh07ZDKZtG/fPvXo0UOTJ0/WvHnzdOzYMY0dO1Zjx461WOA6ffp0TZo0SS+88II+/PBDPfbYY+rcubNuvPFGbdy4UW3bttVXX32lFi1ayMXF5ap+TqVK4GZlZenxxx/XokWLlJ+fL6ngBz506FDNmjVLVapUuaqgAAAAUIbcqhYcAGDHLLZ+OX9GOnvKXOwQ/Z7k5FzwwdPF32d/3/oFAFBq99xzj4KDgxUTE6P33nvP6vyMGTN0++236+WXX5Yk3XDDDdq5c6dee+21QhO47u7u8vT0lJOTk3x9fa3O33fffeYVs5I0YsQIPf/88xo2bJgkqWHDhpo0aZLGjx9vTuCOGzfO3D4wMFCTJ0/Wo48+qrfeeksuLi6qXr26TCZToc935513atSoUZKkCRMmaM6cObrllls0YMAASdJzzz2ndu3aKS0tTb6+voqPj9f9999vfs4mTZpo5syZ6ty5s+bMmSM3Nzdzv6NHjzb38frrr2v16tUWi1xr1apVaEwl5VCai6KiorR27Vp9+umnysjIUEZGhj7++GOtXbu2yOXTAAAAAAAUy4FN0rd/28bv2/nS6rcL6gEAZW7KlClauHChfv31V6tzv/76q2677TaLuttuu0179uxRXl5eiZ/r71sVSNLPP/+siRMnytPT03w8/PDDSklJ0blz5yRJX331lW6//XbVrVtXVatW1YMPPqgTJ06Yz19Oq1aXvonm4+MjSWrZsqVVXXp6ujmeBQsWWMQTERGh/Px8HThwoNB+LyaPL/ZR1kq1Avejjz7Shx9+qC5dupjr7rzzTrm7u2vgwIGaM2dOWcUHAAAAO1TSryJLfB0ZQAkEhUh+N1rXF7X1CwDgqnTq1EkRERGKjo4udFVtWbq4j+xFZ8+eVVxcnPr162fV1s3NTQcPHlTv3r312GOP6ZVXXlHNmjW1bt06jRw5Ujk5OVfcCeDvN0m7uEduYXUXdxk4e/asRo0apSeeeMKqr/r1L90T4p83XzOZTOY+ylqpErjnzp0zZ6f/rk6dOsXKfAMAgLJX4jt2AwBgr9j6BQAq3Kuvvqrg4GDdeKPlB2jNmjXTd999Z1H33Xff6YYbbpCjo2Ohfbm4uBR7dW6bNm20e/duNW7cuNDzmzZtUn5+vqZPny4Hh4LNBP65mKAkz1eceHbu3FlkPMVxcc/bsoqpVFsotGvXTjExMTp//ry57s8//1RcXJzatWtXJoEBAICSSUxMVEhIiNWRmJho69AAAAAA2LmWLVvq/vvv18yZMy3qn376aSUnJ2vSpEn67bfftHDhQr355pt65plniuwrMDBQBw4c0NatW3X8+HFlZ2cX2XbChAlatGiR4uLitGPHDv36669asmSJXnrpJUlS48aNlZubq1mzZmn//v16//33NXfuXKvnO3v2rJKTk3X8+PGrWmD63HPP6fvvv9fYsWO1detW7dmzRx9//LHGjh1b7D7q1Kkjd3d3JSUlKS0tTadPny51PFIpV+AmJCSoR48eqlevnlq3bi2pYH8INzc3rVy58qoCAgAApVPiO3YDQAmx0h8AgOKrjNtHTZw4UUuXLrWoa9OmjZYtW6YJEyZo0qRJ8vPz08SJEy+71UL//v21fPlyde3aVRkZGZo/f36R7SMiIvS///1PEydO1JQpU+Ts7KymTZvqoYcekiS1bt1aM2bM0JQpUxQdHa1OnTopPj5eQ4cONffRvn17Pfrooxo0aJBOnDihmJgYxcbGluo1aNWqldauXasXX3xRHTt2lGEYatSokQYNGlTsPpycnDRz5kxNnDhREyZMUMeOHbVmzZpSxSOVMoHbsmVL7dmzR//5z3+0a9cuSdKQIUN0//33y93dvdTBAACA0vPz81O1atXM5eDgYKv9pQDgaiQmJiouLs6q/mreJAEAANtYsGCBVV1gYGChq2X79++v/v37F7tvV1dXffjhh1b1hmEU2j4iIkIRERFF9vfUU0/pqaeesqh78MEHLcpz5syxui/XwYMHrxhDYGCgVd0tt9yiL7/8ssh4Cut369atFuWHHnrInIS+WiXeQiE3N1eNGjXS77//rocffljTp0/X9OnT9dBDD5UqeTt79mwFBgbKzc1NYWFh2rhxY5Ftd+zYof79+yswMFAmk0kJCQlWbWJjY2UymSyOpk2bljguAAAAAJZGjRqldevWmcvr1q3Tpk2bNGrUKBtGBQBFS0lJ0ebNm62Owr5NAAD2qsQJXGdnZ4u9b6/G0qVLFRUVpZiYGG3evFmtW7dWRESE0tPTC21/7tw5NWzYUK+++qp8fX2L7LdFixbmr3elpKRY/JEJAAAAoHT8/PwUHBxsLgcHB6tNmzZsnwDAbnGPAADXglJtoTBmzBhNmTJF7777rpycStWFJGnGjBl6+OGHFRkZKUmaO3euPvvsM82bN0/PP/+8VftbbrlFt9xyiyQVev4iJyenyyZ4AQAAAADAtcfUL9ay4vwZqWOk9O38gnLHSMnJWXEbzyjur7bG8n9cAwB2plTZ1x9//FHJycn68ssv1bJlS6v99ZYvX37FPnJycrRp0yZFR0eb6xwcHBQeHq7169eXJiyzPXv2yN/fX25ubmrXrp3i4+NVv379IttnZ2db7O+RmZl5Vc8PALg+2MP8YXr6U8uK3EvfkvGM/lxydrO6xpjep7zDAnANsUqGXMgxP/Qc8ork5GJxmkTI5dnD3AGgaNysEYA9KvEWCpJUo0YN9e/fXxEREfL391f16tUtjuI4fvy48vLy5OPjY1Hv4+Oj1NTU0oQlSQoLC9OCBQuUlJSkOXPm6MCBA+rYsaPOnDlT5DXx8fEW8QcEBJT6+QEA1w/mDwBASTF3ABXswKZLq2+lgser3y6oLwRbLqC0iro5F3A5xf13U6IVuPn5+Xrttdf022+/KScnR926dVNsbGypbl5WXnr27Gl+3KpVK4WFhalBgwZatmyZRo4cWeg10dHRioqKMpczMzP5QwqoZJYtW1ai9gMHDiynSHA9Yf64PrASB0BZYu5AZVLSOXDr1q3asWOHVX2LFi0s9s+uUEEhkt+N1vVunoU2HzVqlLp3764OHTpIKrhZo7u7O3M+iuTs7Cyp4L5N9pQfQ+Vw7tw5SZf+HRWlRAncV155RbGxsQoPD5e7u7tmzpypY8eOad68eSUO0NvbW46OjkpLS7OoT0tLK9P9a2vUqKEbbrhBe/fuLbKNq6urXF1dy+w5AQDXB+aP60NiYqLi4uKs6mNiYhQbG1vxAQG2dP6MdPbUpXJGquTkXJAIcatqu7gqEeYO2DuLbVO2r5T2/mDdqPGtUsuIgsdBIZfql0ZLR6wTuKrbQhoUX9Ak7M8SxXPVCy/cql7x95PFllRnT0qnL30ruMOsdZKTq+ThJXnWlCQtDbu6kHBtcXR0VI0aNZSeni5JqlKlikwmk42jgr0zDEPnzp1Tenq6atSoIUdHx8u2L1ECd9GiRXrrrbc0atQoSdJXX32lXr166d1335WDQ8l2Y3BxcVFISIiSk5PVt29fSQUrfJOTkzV27NgS9XU5Z8+e1b59+/Tggw+WWZ8AAODaZvHmNSNFurmPtOWvN3c395EcnRX3TUqhNz+xy9VHQFk5sEnatfZS+eLXkpt2lpp1sUlIAOxI14elE4es62sVfU8au7MtSfphyaXy0r9uoH7rYKn9fbaJCXbv4kLEi0lcoLhq1KhRrIWsJUrgHjp0SHfeeae5HB4eLpPJpKNHj6pevXolDjIqKkrDhg1TaGio2rZtq4SEBGVlZSkyMlKSNHToUNWtW1fx8QWf1OXk5Gjnzp3mx0eOHNHWrVvl6empxo0bS5KeeeYZ9enTRw0aNNDRo0cVExMjR0dHDRkypMTxAQBQqfxjxYjS91utGEEppOy2TFhdTOQ27SzVKPg6pcXKnWKsPuJGcqi0SvhVZACVXJP2UkAr6/qi/p+v07DgqMxa9ZAaFbLE1sOr4mNBpWEymeTn56c6deooNzfX1uGgknB2dr7iytuLSpTAvXDhgtzcLO9m7ezsXOp/nIMGDdKxY8c0YcIEpaamKjg4WElJSeYbmx06dMhiZe/Ro0d18803m8vTpk3TtGnT1LlzZ61Zs0aSdPjwYQ0ZMkQnTpxQ7dq11aFDB/3www+qXbt2qWIEAKDSYMVI+ShpwupaWH0EFKUYX0UGcA25Hv+f96zJB98oNUdHx2In5ICSKFEC1zAMDR8+3GLPpvPnz+vRRx+Vh4eHuW758uXF7nPs2LFFbplwMSl7UWBg4BXvzrZkyZLLngcA4JrFipHyUdI3r9fC6iMAAAAAdqNECdxhw4ZZ1T3wwANlFgwAALgKrBgBYGdKegd7AAAAWCtRAnf+/PnlFQcAAMB1Y9myZSW+5qrvwg3YQGJiouLi4qzqY2JiFBsbW/EBAQCuGSX9e4q/pVCZlSiBCwAAAMB+2Pub11GjRql79+7q0KGDJGndunVyd3dn9S0AAEAJkMAFAAAAUC78/PxUrVo1czk4ONji3hnAtYwtRAAAZYUELgAAAIAyY3r6U8uK3PPmh57Rn0vObhanlxZy70XgWjBt2jTNmDHDqj4qKkrTp0+3qt+6dat27NhhVd+iRQsFBweXR4gAgEqCBC4AAAAAAGXA1C/2UmH794W2mfHJ95px4K92QSGXTiyNlo5YJ3BVt4U0KF6SZEzvUyZxAgAqFxK4AOx+/zwAAFBJnT0pnU69VE7fLzm5Sh5ekmdN28UFVIQm7aWAVtb1bp6Ft+/6sHTikHV9rfrmh/zdDgDXJxK4AAAAAMrHtiTphyWXykufL/jvrYOl9vfZJiagorhVLTiKq07DggMAgH8ggQsAAACgfLTqITUqZJNbD6+KjwUAAKCSIoELXOO4+y1QefH/L4BKz7MmWyVcI/jqPgAAtkMCF6hESpPMSUxMVFxcnFV9TEyMYmNjyzpEAGXoevz/l6Q1AAAAAFgigQtcpYpcjTBt2jTNmDHDqj4qKkrTp083l01Pf3rpZLqX1P1xadWsgnL3xyUnZ8Xt81LcX+2WFvLNRgC2N2rUKHXv3l0dOnSQJK1bt07u7u7XdCLzekxaAwAAAMDlkMDFdaWkK7vsYSWYqV/spcL27wttM+OT7zXjwN/aBYVcerz3B8ubh1xM5N46mJskAHbOz89P1apVM5eDg4Pl4eFhw4jKR0k/dJIkY3qfCo4SAAAAAGyDBC6uK8VZwWqRSFjznrT5Y+uO2twtdRkpqYJXrzZpLwW0sq538yz6Gm4eAqAy4UMnAAAAALBAAhfXNIvVq1LxVrD+ffWqvXGrWnCUBDcPAVCZ8KETAAAAAFgggYvrS0lXsIbeIzXrYl1PIgFAObH64OlCjvmh55BXJCcXy/P2/KGTSrEVDR86AQAAAIAFEri4vpR0BSuJBAC4KtyUDAAAAACuDglcAABQpixWEZ8/I3WMlL6dX1DuGFlwU7KNZxR3sZ2dryIGAAAAAFtysHUAAAAAAAAAAIDCsQIXgN0r8R6awLXi/Bnp7KlL5YxUycm5YN/ukt7Q0FYObJJ2rb1UvrgSt2nnwvcYBwAAAABYsPkK3NmzZyswMFBubm4KCwvTxo0bi2y7Y8cO9e/fX4GBgTKZTEpISLjqPgHYv8TERIWEhFgdiYmJtg4NKF8HNl1KeEoFj1e/XVBfWQSFSF0fsT7YNgHXoZSUFG3evNnqKOxDSgAAAOAim67AXbp0qaKiojR37lyFhYUpISFBERER2r17t+rUqWPV/ty5c2rYsKEGDBigp556qkz6BGD/Ro0ape7du6tDhw6SpHXr1snd3Z3Vt7j2BYVIfjda17t5VnwspVXSm0cC1zBu6gcAAIDSsGkCd8aMGXr44YcVGRkpSZo7d64+++wzzZs3T88//7xV+1tuuUW33HKLJBV6vjR9SlJ2drays7PN5czMzKsaF4Cy5efnp2rVqpnLwcHB8vDwsGFEQIFynz9IfgLXFD6QhMR7DwDXH7bEA66ezRK4OTk52rRpk6Kjo811Dg4OCg8P1/r16yu0z/j4+EJXQwAoe8WZvE1Pf2p9Ye5580PP6M8lZzeL00vDyjZOoDiYPwBcialf7KXCP/a17hD9ntW+1sbyWOHaxtwB4HrDN1CAq2ezBO7x48eVl5cnHx8fi3ofHx/t2rWrQvuMjo5WVFSUuZyZmamAgIBSxQDg8ko1eZ89KZ1OvVRO3y85uUoeXpJnzfIJFCgG5g8AJcJN/SDmDgD2YdmyZSVqP3DgwBK1t/oAs2PkpXmvY6Tk5Ky4jWcU97d2fIgJFM2mWyjYC1dXV7m6uto6DOCaZTF5Z6RIN/eRtvy1yvbmPpKjs+K+Sbk0ef/z5kbbkqQfllwqL/1rO5RbB0vt7yufoIFiYP4AUCLXwr7WuGrMHQAAoKRslsD19vaWo6Oj0tLSLOrT0tLk6+trN30CKGMpuy1XH11M5DbtLNUoYv+jVj2kRoXskeDhVfbxAQBQXkq4rzV7BgIArgl8AwW4ajZL4Lq4uCgkJETJycnq27evJCk/P1/JyckaO3as3fQJoIyVZvWRZ022SgAAXHfYMxAAcE0oxXtAPsQELNl0C4WoqCgNGzZMoaGhatu2rRISEpSVlaXIyEhJ0tChQ1W3bl3Fx8dLKrhJ2c6dO82Pjxw5oq1bt8rT01ONGzcuVp8AbKyEq48AALhejRo1St27d1eHDh0kSevWrZO7uztvXAEAlUsp3gPyISZgyaYJ3EGDBunYsWOaMGGCUlNTFRwcrKSkJPNNyA4dOiQHBwdz+6NHj+rmm282l6dNm6Zp06apc+fOWrNmTbH6BAAAAOyV6elPLxX+cRPPDrPWWd3Ec2khOwwBAFDZ8SEmYMnmNzEbO3ZskdsbXEzKXhQYGCjDMK6qTwAAAKBS4CaeAIDrCB9iAkWzeQIXAAAAQCG4iScA4HrFh5iABRK4AAAAgD3iJp4AgOsVH2ICFkjgAgAAAAAAwH7wISZggQQuAKDMLFu2rETtBw4cWE6RAAAAAABwbXCwdQAAAAAAAAAAgMKxAhcAAFQ6rPYGAAAAcL1gBS4AAAAAAAAA2CkSuAAAAAAAAABgp0jgAgAAAAAAAICdIoELAAAAAAAAAHaKm5gBAAAAAADYqZSUFKWkpFjV+/n5yc/PzwYRAahorMAFAAAAAACwU4mJiQoJCbE6EhMTbR0agArCClwAAAAAAAA7YeoXa1mRkSLd3Efa8mlB+eY+kqOz4r5JUdxfbY3l/7gGwDWFBC4AAAAAAIC9Stkt7Vp7qXwxkdu0s1TDegsFtlwArj0kcAEAAAAAAOxVUIjkd6N1vZtnoc0TExMVFxdnVR8TE6PY2NgyDg5ARSCBCwAAAAAAYK/cqhYcl2F6+tNLhXQvqfvj0qpZBeXuj0tOzorb56W4v9otDSuvYAGUBxK4AGAnli1bVqL2AwcOLKdIAAAAAFRae3+QflhyqXwxkXvrYKlOQ9vEBOCqkMAFAAAAAAC4VrTqITUqZImth1fFxwKgTJDABQAAAAAAuFZ41iw4AFwzHGwdgCTNnj1bgYGBcnNzU1hYmDZu3HjZ9h988IGaNm0qNzc3tWzZUp9//rnF+eHDh8tkMlkcPXr0KM8hAAAAAAAAAECZs3kCd+nSpYqKilJMTIw2b96s1q1bKyIiQunp6YW2//777zVkyBCNHDlSW7ZsUd++fdW3b1/98ssvFu169OihlJQU8/F///d/FTEcAAAAAAAAACgzNk/gzpgxQw8//LAiIyPVvHlzzZ07V1WqVNG8efMKbf/GG2+oR48eevbZZ9WsWTNNmjRJbdq00ZtvvmnRztXVVb6+vubDy4u9XgAAAAAAAABULjbdAzcnJ0ebNm1SdHS0uc7BwUHh4eFav359odesX79eUVFRFnURERFasWKFRd2aNWtUp04deXl5qVu3bpo8ebJq1apVaJ/Z2dnKzs42lzMzM0s5IgC4Nl38NsM/+fn5yc/PzwYR2QfmDwBASTF3AACAkrJpAvf48ePKy8uTj4+PRb2Pj4927dpV6DWpqamFtk9NTTWXe/TooX79+ikoKEj79u3TCy+8oJ49e2r9+vVydHS06jM+Pl5xcXFlMCIAuDYlJiYW+nsyJiZGsbGxFR+Qnais88eyZctK1H7gwIHlFAkAXH8q69wBAABsx6YJ3PIyePBg8+OWLVuqVatWatSokdasWaPbb7/dqn10dLTFqt7MzEwFBARUSKwAYK9MT396qXA2SBr0qrT0+YLyoFclJ1fFpXgp7m/tloZVcJA2xvwBACgp5g4AAFBSNk3gent7y9HRUWlpaRb1aWlp8vX1LfQaX1/fErWXpIYNG8rb21t79+4tNIHr6uoqV1fXUowAAContkQoG8wfAICSYu4AAAAlZdMErouLi0JCQpScnKy+fftKkvLz85WcnKyxY8cWek27du2UnJyscePGmetWrVqldu3aFfk8hw8f1okTJ0hKALiumfrFXipsXynt/cG6UeNbpZYRBY+DQi7Vb0uSflhyqXxxJe6tg6X295V1qAAAAAAA4C8230IhKipKw4YNU2hoqNq2bauEhARlZWUpMjJSkjR06FDVrVtX8fHxkqQnn3xSnTt31vTp09WrVy8tWbJEP/30k95++21J0tmzZxUXF6f+/fvL19dX+/bt0/jx49W4cWNFRETYbJwAUKm16iE1KmR/BA+vio8FAAAAAIDriM0TuIMGDdKxY8c0YcIEpaamKjg4WElJSeYblR06dEgODg7m9u3bt9fixYv10ksv6YUXXlCTJk20YsUK3XTTTZIkR0dHbdu2TQsXLlRGRob8/f11xx13aNKkSXxVCQAuatJeCmhlXe/mWXh7z5oFBwAAAAAAqFA2T+BK0tixY4vcMmHNmjVWdQMGDNCAAQMKbe/u7q6VK1eWZXgAcO1xq1pwAAAAAAAAu2YXCVwAuNZx0zAAAAAAAFAaJHABoIRKk4xNTExUXFycVX1MTIxiY2PLOkQAAAAAAHCNIIELACU0bdo0zZgxw6o+KipK06dPlySZnv7U8mS6l9T9cWnVrIJy98clJ2fF7fNS3F9tlxZyjzAAAAAAAHB9I4ELAMVg6hd7qbD9+0LbzPjke8048Fe7oBDLk3t/kH5Ycql8MZF762CpTsOyChMAAAAAAFxjSOACQEk1aS8FtLKud/Ms+ppWPaRGhSyx9fAqu7gAAAAAAMA1hwQuAJSUW9WCoyQ8axYcAAAAAAAAJeBg6wAAAAAAAAAAAIUjgQsAAAAAAAAAdooELgAAAAAAAADYKRK4AAAAAAAAAGCnSOACAAAAAAAAgJ0igQsAAAAAAAAAdooELgAAAAAAAADYKRK4AAAAAAAAAGCnSOACAAAAAAAAgJ0igQsAAAAAAAAAdooELgAAAAAAAADYKRK4AAAAAAAAAGCnSOACAAAAAAAAgJ0igQsAAAAAAAAAdsouErizZ89WYGCg3NzcFBYWpo0bN162/QcffKCmTZvKzc1NLVu21Oeff25x3jAMTZgwQX5+fnJ3d1d4eLj27NlTnkMAAAAAAAAAgDJn8wTu0qVLFRUVpZiYGG3evFmtW7dWRESE0tPTC23//fffa8iQIRo5cqS2bNmivn37qm/fvvrll1/MbaZOnaqZM2dq7ty52rBhgzw8PBQREaHz589X1LAAAAAAAAAA4KrZPIE7Y8YMPfzww4qMjFTz5s01d+5cValSRfPmzSu0/RtvvKEePXro2WefVbNmzTRp0iS1adNGb775pqSC1bcJCQl66aWXdPfdd6tVq1ZatGiRjh49qhUrVlTgyAAAAAAAAADg6jjZ8slzcnK0adMmRUdHm+scHBwUHh6u9evXF3rN+vXrFRUVZVEXERFhTs4eOHBAqampCg8PN5+vXr26wsLCtH79eg0ePNiqz+zsbGVnZ5vLp0+fliRlZmaWemySpNzsK7exCORciZqfO/dnidqXeDwljV9iDMXAGIqhhPFLjKFYroUxFHKtYRil7uNqlcv8cS38nBjDFZU0fokxFAtjuKJS/X66FsZQyPW2mj9473EZjOGKGEMxXI/vnyTGUAyVff7Adc6woSNHjhiSjO+//96i/tlnnzXatm1b6DXOzs7G4sWLLepmz55t1KlTxzAMw/juu+8MScbRo0ct2gwYMMAYOHBgoX3GxMQYkjg4ODg4KuHxxx9/lHYaumrMHxwcHByV97DV/MHcwcHBwVG5D1u+/8D1y6YrcO1FdHS0xare/Px8nTx5UrVq1ZLJZLJhZAWf8AQEBOiPP/5QtWrVbBpLaTEG+8AY7ENlH4M9xW8Yhs6cOSN/f3+bxWCv84c9/ZxKizHYB8ZgHxhD2bL1/GGvc4dkXz+n0mIM9oEx2AfGULZsPX/g+mbTBK63t7ccHR2VlpZmUZ+WliZfX99Cr/H19b1s+4v/TUtLk5+fn0Wb4ODgQvt0dXWVq6urRV2NGjVKMpRyV61aNZv/srpajME+MAb7UNnHYC/xV69e3abPb+/zh738nK4GY7APjME+MIayY8v5w97nDsl+fk5XgzHYB8ZgHxhD2bH1+w9cv2x6EzMXFxeFhIQoOTnZXJefn6/k5GS1a9eu0GvatWtn0V6SVq1aZW4fFBQkX19fizaZmZnasGFDkX0CAAAAAAAAgD2y+RYKUVFRGjZsmEJDQ9W2bVslJCQoKytLkZGRkqShQ4eqbt26io+PlyQ9+eST6ty5s6ZPn65evXppyZIl+umnn/T2229Lkkwmk8aNG6fJkyerSZMmCgoK0ssvvyx/f3/17dvXVsMEAAAAAAAAgBKzeQJ30KBBOnbsmCZMmKDU1FQFBwcrKSlJPj4+kqRDhw7JweHSQuH27dtr8eLFeumll/TCCy+oSZMmWrFihW666SZzm/HjxysrK0uPPPKIMjIy1KFDByUlJcnNza3Cx3e1XF1dFRMTY/U1q8qEMdgHxmAfKvsYKnv814tr4efEGOwDY7APjAEV5Vr4OTEG+8AY7ANjAK4dJsMwDFsHAQAAAAAAAACwZtM9cAEAAAAAAAAARSOBCwAAAAAAAAB2igQuAAAAAAAAANgpErgAAAAAAAAAYKdI4Nqx2bNnKzAwUG5ubgoLC9PGjRttHVKJfPPNN+rTp4/8/f1lMpm0YsUKW4dUIvHx8brllltUtWpV1alTR3379tXu3bttHVaJzJkzR61atVK1atVUrVo1tWvXTl988YWtw7oqr776qkwmk8aNG2frUIotNjZWJpPJ4mjatKmtwyqxI0eO6IEHHlCtWrXk7u6uli1b6qeffrJ1WCgE84dtMX/YJ+YP22H+qDwq8/xR2ecOifnDHjF32A5zB2CJBK6dWrp0qaKiohQTE6PNmzerdevWioiIUHp6uq1DK7asrCy1bt1as2fPtnUopbJ27VqNGTNGP/zwg1atWqXc3FzdcccdysrKsnVoxVavXj29+uqr2rRpk3766Sd169ZNd999t3bs2GHr0Erlxx9/VGJiolq1amXrUEqsRYsWSklJMR/r1q2zdUglcurUKd12221ydnbWF198oZ07d2r69Ony8vKydWj4B+YP22P+sD/MH7bD/FF5VPb5o7LPHRLzh71h7rAd5g6gEAbsUtu2bY0xY8aYy3l5eYa/v78RHx9vw6hKT5Lx3//+19ZhXJX09HRDkrF27Vpbh3JVvLy8jHfffdfWYZTYmTNnjCZNmhirVq0yOnfubDz55JO2DqnYYmJijNatW9s6jKvy3HPPGR06dLB1GCgG5g/7w/xhW8wftsX8UXlcS/PHtTB3GAbzhy0xd9gWcwdgjRW4dignJ0ebNm1SeHi4uc7BwUHh4eFav369DSO7vp0+fVqSVLNmTRtHUjp5eXlasmSJsrKy1K5dO1uHU2JjxoxRr169LP6/qEz27Nkjf39/NWzYUPfff78OHTpk65BK5JNPPlFoaKgGDBigOnXq6Oabb9Y777xj67DwD8wf9on5w7aYP2yL+aNyYP6wT8wftsPcYVvMHYA1Erh26Pjx48rLy5OPj49FvY+Pj1JTU20U1fUtPz9f48aN02233aabbrrJ1uGUyPbt2+Xp6SlXV1c9+uij+u9//6vmzZvbOqwSWbJkiTZv3qz4+Hhbh1IqYWFhWrBggZKSkjRnzhwdOHBAHTt21JkzZ2wdWrHt379fc+bMUZMmTbRy5Uo99thjeuKJJ7Rw4UJbh4a/Yf6wP8wftsX8YXvMH5UD84f9Yf6wHeYO22PuAKw52ToAoDIYM2aMfvnll0q3d5Ak3Xjjjdq6datOnz6tDz/8UMOGDdPatWsrzR9Rf/zxh5588kmtWrVKbm5utg6nVHr27Gl+3KpVK4WFhalBgwZatmyZRo4cacPIii8/P1+hoaH617/+JUm6+eab9csvv2ju3LkaNmyYjaMD7Bfzh+0wf9gH5g+gdJg/bIO5wz4wdwDWWIFrh7y9veXo6Ki0tDSL+rS0NPn6+tooquvX2LFj9b///U+rV69WvXr1bB1Oibm4uKhx48YKCQlRfHy8WrdurTfeeMPWYRXbpk2blJ6erjZt2sjJyUlOTk5au3atZs6cKScnJ+Xl5dk6xBKrUaOGbrjhBu3du9fWoRSbn5+f1R/dzZo1q3Rfx7rWMX/YF+YP22L+sA/MH5UD84d9Yf6wHeYO+8DcAVgjgWuHXFxcFBISouTkZHNdfn6+kpOTK93eQZWZYRgaO3as/vvf/+rrr79WUFCQrUMqE/n5+crOzrZ1GMV2++23a/v27dq6dav5CA0N1f3336+tW7fK0dHR1iGW2NmzZ7Vv3z75+fnZOpRiu+2227R7926Lut9++00NGjSwUUQoDPOHfWD+sA/MH/aB+aNyYP6wD8wftsfcYR+YOwBrbKFgp6KiojRs2DCFhoaqbdu2SkhIUFZWliIjI20dWrGdPXvW4lO+AwcOaOvWrapZs6bq169vw8iKZ8yYMVq8eLE+/vhjVa1a1bz/V/Xq1eXu7m7j6IonOjpaPXv2VP369XXmzBktXrxYa9as0cqVK20dWrFVrVrVat8vDw8P1apVq9LsB/bMM8+oT58+atCggY4ePaqYmBg5OjpqyJAhtg6t2J566im1b99e//rXvzRw4EBt3LhRb7/9tt5++21bh4Z/YP6wPeYP+8D8YR+YPyqPyj5/VPa5Q2L+sAfMHfaBuQMohAG7NWvWLKN+/fqGi4uL0bZtW+OHH36wdUglsnr1akOS1TFs2DBbh1YshcUuyZg/f76tQyu2ESNGGA0aNDBcXFyM2rVrG7fffrvx5Zdf2jqsq9a5c2fjySeftHUYxTZo0CDDz8/PcHFxMerWrWsMGjTI2Lt3r63DKrFPP/3UuOmmmwxXV1ejadOmxttvv23rkFAE5g/bYv6wX8wftsH8UXlU5vmjss8dhsH8Ya+YO2yDuQOwZDIMwyj3LDEAAAAAAAAAoMTYAxcAAAAAAAAA7BQJXAAAAAAAAACwUyRwAQAAAAAAAMBOkcAFAAAAAAAAADtFAhcAAAAAAAAA7BQJXAAAAAAAAACwUyRwAQAAAAAAAMBOkcAFAAAAAAAAADtFAhcAAAAAAAAA7BQJXAAAAFg5ePCgTCaT+ahZs6Y6d+6sb7/91qLduXPnFB0drUaNGsnNzU21a9dW586d9fHHH9socgAAAODaQgIXAAAARfrqq6+UkpKib775Rv7+/urdu7fS0tLM5x999FEtX75cs2bN0q5du5SUlKR7771XJ06csGHUAAAAwLXDZBiGYesgAAAAUL66dOmili1bytHRUQsXLpSLi4smT56s++67T2PHjtWHH34oHx8fzZo1Sz179tTBgwcVFBSkLVu2KDg4WJK0fft2tWrVSh9//LHuuusuSVKNGjX0xhtvaNiwYTYcHQAAAHDtYgUuAADAdWLhwoXy9vbWxo0b9fjjj+uxxx7TgAED1L59e23evFl33HGHHnzwQZ07d87q2j///FOLFi2SJLm4uJjrfX199fnnn+vMmTMVNg4AAADgesIKXAAAgOtAly5dlJeXZ97DNi8vT9WrV1e/fv3MidnU1FT5+flp/fr18vX1VVBQkNzd3eXg4KBz587JMAyFhIRo/fr1cnZ2liR98803uv/++5WWlqbWrVurQ4cOuvfee3XbbbfZbKwAAADAtYQVuAAAANeJVq1amR87OjqqVq1aatmypbnOx8dHkpSenm6uW7p0qbZs2aKPPvpIjRs31oIFC8zJW0nq1KmT9u/fr+TkZN17773asWOHOnbsqEmTJlXAiAAAAIBrn5OtAwAAAEDF+HviVZJMJpNFnclkkiTl5+eb6wICAtSkSRM1adJEFy5c0D333KNffvlFrq6uFv127NhRHTt21HPPPafJkydr4sSJeu655yy2WwAAAABQcqzABQAAQLHce++9cnJy0ltvvXXZds2bN9eFCxd0/vz5CooMAAAAuHaRwAUAAECxmEwmPfHEE3r11VfNNzrr0qWLEhMTtWnTJh08eFCff/65XnjhBXXt2lXVqlWzccQAAABA5UcCFwAAAMU2bNgw5ebm6s0335QkRUREaOHChbrjjjvUrFkzPf7444qIiNCyZctsHCkAAABwbTAZhmHYOggAAAAAAAAAgDVW4AIAAAAAAACAnSKBCwAAAAAAAAB2igQuAAAAAAAAANgpErgAAAAAAAAAYKdI4AIAAAAAAACAnSKBCwAAAAAAAAB2ysnWAdij/Px8HT16VFWrVpXJZLJ1OACAQhiGoTNnzsjf318ODvbxeSTzBwDYP3ubP5g7AKBysLf5A9cXEriFOHr0qAICAmwdBgCgGP744w/Vq1fP1mFIYv4AgMrEXuYP5g4AqFzsZf7A9YUEbiGqVq0qqeB/ymrVqtk4GgBAYTIzMxUQEGD+nW0PmD8AwP7Z2/zB3AEAlYO9zR+4vpDALcTFry5Vq1aNP6IAwM7Z09dNmT8AoPKwl/mDuQMAKhd7mT9wfWHTDgAAAAAAAACwUyRwAQAAAAAAAMBOkcAFAAAAAAAAADtFAhcAAAAAAAAA7BQJXAAAAAAAAACwU3afwP3mm2/Up08f+fv7y2QyacWKFVe8Zs2aNWrTpo1cXV3VuHFjLViwoNzjBAAAAAAAAICyZvcJ3KysLLVu3VqzZ88uVvsDBw6oV69e6tq1q7Zu3apx48bpoYce0sqVK8s5UgAAAADlzTAMW4cAAABQoZxsHcCV9OzZUz179ix2+7lz5yooKEjTp0+XJDVr1kzr1q3T66+/roiIiEKvyc7OVnZ2trmcmZl5dUEDAAqVfjpL/916SMm7UuWefUq1q3lo2vDCfzdXBswfAFCxpnzxsxat/F6fvzBEDerUsHU4pcLcAQAVK/nXo3r9y21yPHdKH0cPsXU4QKnYfQK3pNavX6/w8HCLuoiICI0bN67Ia+Lj4xUXF1fOkQHA9eWP46f13y2/6+vf0rUtJVPOytNv51wlk0mS1KlKptb88nulTuAyfwBAxThx5pyempek9zcdkRydFLdsjeaN7WvrsEqFuQMAyl9+fr6+3LpPX3z3k5YezFeaUVU6tE9b9qfo5oZ+tg4PKLFrLoGbmpoqHx8fizofHx9lZmbqzz//lLu7u9U10dHRioqKMpczMzMVEBBQ7rECwLUgPz9fu46e0Ofb/tCvR47rSEqath5MVdrZXCmgpRxkaFqrPNV1N/TMNkNHsvJUy1Xy9/XRk3feIsMwZPorqVvZMH8AQPn649Q5zVuzXQd2/qxlP6dIeYa6tbtFM0eGX/liO8XcAQDlwzAMfbEzRbGf/6LjB/eog4+DejetJZf8HC04kqvYUX3UskEdW4cJlMo1l8AtDVdXV7m6uto6DACwe9m5F7TtYJqSdhzWN3uPaUd6ltL+NJTv5C45OEhZp+Rz7g8FebkpPTNXzkauvNwclSMn5emC/t2vsTre3LzSJmz/ifkDAMrHmfMX9OJnv2j294f0dJPzurNJDdWv4aZe3bsp7IZ6tg7vqjB3AEDZOpzxp6as+lWLNh1WZu5f7zPOOcrl6FlF3FhLfW5toaltQ66Z9yC4Pl1zCVxfX1+lpaVZ1KWlpalatWqFrr4FABTudNZ5bT6Qou92H9Xeo+nasj9VOw4fU17dmyRH579aVZFcCh45KF+hAdX1dBM3yWRSRM87Vd3TQ5J07tw5ubi4yMnpmpt2AABl6EJevt794ZDG/2+HzuTkSzLpk0N5auXlrEf6hqteXX9bhwgAsAM5F/L14c9HNPWrXfo5/U85m6Q+fhd0/oKh9Wk5evTO1nqhdxu5OTvyHgTXhGvuX3G7du30+eefW9StWrVK7dq1s1FEAGDfDMPQ0ZNntHn/Ua3ZlaJ1B05o9/FzOn3BUXKpIuXlSEd+Nbd3zM+V4eikRlVN6hngpBvqVFOX0JvUzKeaTCbpyy+/lJubmxyMfPM1VapUscXQAACVSNKudD2+fJv2njin6s6ScrPV1P28PnosQjf41eQNOABAUsG9NhI+/1EztmZJJgdJJt3ieVaDAhwlk4M+fKIvC/hwzbH7v4LOnj2rvXv3mssHDhzQ1q1bVbNmTdWvX1/R0dE6cuSIFi1aJEl69NFH9eabb2r8+PEaMWKEvv76ay1btkyfffaZrYYAAHYjLy9fe1JOaOvBVG3Zn6otB1K09UCqjjl7Sx5ekqOTJFfJ2VX6a5Gto6Ojnr+3k25p7K+bg3zl4uqm2p6uOnrksNavX68qpjw1961m/kpSeHi4HB0dbTdIAECl8+PvJ9XznQ1yNhl6NDBbwTXydMGrvh6781Y5ODjYOjwAgA2dPJejxZuP6JOf/5DHmaP65Kfdys835FSzrtxcnTUirL6e69VZB3f/onr16snNzc3WIQNlzu4TuD/99JO6du1qLl/c8H/YsGFasGCBUlJSdOjQIfP5oKAgffbZZ3rqqaf0xhtvqF69enr33XcVEVF573IOAKVxPidX239P19aDqVr321FtOHRK+07l6IKjm+TsJh3+5VLj2o6So5McZMjf00k3162m22/0VZcmtdXcp6pOnTiuvXv3yjjnLt/aNSRJfn5+8vb2lp+fn/Lz881JW5K3AIDiOJ+bJzdnR63f/YceeusT6bynHJWj4BrV5OXqoFtb1SN5CwDXqbx8Q8l7jinx+4P6ZGeaLlz8ct+R3+Xp5KCnuzRScx9P9e19p1ycC1Jb/u3b2y5goJzZfQK3S5cuMgyjyPMLFiwo9JotW7aUY1QAYF9Onf1TWw8UrKjdciBVWw+kasfJCzKqeEmuVSQnF0leUtVL1wzqEqJuTf0UHOQrOVeRg6ODWvpVlauTo/Lz82Uymcyrao8fP67Dhw8rNzdXDRo0kCQ5OTmpW7duNhgtAKAyy8q+oOlr9+vNdQfUy/eCFib/KMOQalc/pzcf6qkeLevr3Llz8vX1tXWoAIAK9sepP/XOht/1zvrflXo259KJ7HNyOZ+hBzq30BN33KwD239UTs55nTxxnPkC1wW7T+ACAC4xDEOHT2Rqy/6CRO3Gfan66XCG0v80JFcP6cQhKe9CQeMafpJHDUmSSVLdqs4KDaihbjfUUdv6Xrq5bnW5OFmvbNq2bZsOHDig2267Td7e3pKk+vXrKycnR/Xr16+gkQIArjV5+YYW/fSHXvpit45mnpckLfjpiLo38lJIkwA9O7iHalYt2DO9WrVqtgwVAGADObkXNHPVNk3bkF5QkXdBOntSQR55Gh/RTPfdfreqVSnYHqGmS77c3d3N71eAax0JXACwU+dzcrU35aR+PphWsGftgRRt+v2kMgy3glW1rlUkZw/J3UP6a4/+W/3d1bNpbd0c5Ccndw/tPpmtWwK8FOxfTR6u1r/yDcNQVlaWPD09zXV//vmnsrOzdfjwYfMfRJ6engoODq6IYQMArkHJvx3TM5/u1NajmQUVudnSqSO6K8hN99/kJycnydWh6G/dAQCuLYZhaMOhDM3beEi13R3leCZd76zarNSMs1LtIJn+PK2+N/nq8Z5d5HDysNLSUpSX/af0VwI3ICDAxiMAKhYJXACwoezcC9qfdkp7jp7QnpST2pNyQr+lnNSu1EylZOVKTm7Sn5lSbsFKJXnWlGrXs+ijblUXhTXwUvugWrqnpa8a1vIwn+t5mee+cOGCvvrqK505c0a9e/c236n1hhtuUP369eXj41PWwwUAXGcMw9CARZv00bYUSZIpP0/GqRSZzh7T031uVczATtq0cYN8fHxUpUoVG0cLAChvaWey9f5PhzVv4yH9mn62oPJCjvTHdkmSbw1PPdK1vh7pHqK6tQq+jfHDD8fk4OCgU6dOycvLy1ahAzZFAhcAyllO7gUdSM/QnpS/krR/S9YeOn5ahqOLVLW25OxacHMx5xoFidq/FsU2cDyjXo2r6+YgX9X0qqF/bz+hsAY1FVqvutrUqy6vKi7FiuPcuXM6c+aMOTHr5OQkJycnmUwmnTp1ypzA5Y8iAEBZMZlMquXmIJMMGafTZWSkqNsNdTRlxEiFNq4rSerUqZN5z3UAwLUpaVe65n5/UP/7NV15+X994yI/X8o6JZ09rg7N6mtsz7a6+5YbdOTwH6pd1c18bevWrXXTTTdZfGsQuN6QwAWAMpB7IU8H0k9pz9GT2pt60pys/S3lhH4/lS3DyeWv5Oxfx5nT0tnTkiR3d3f9WcNy430XR5Ma1aqiFr7VdH+bUPVt6Wc+1y+0UYnjO3HihJKTk+Xq6qo+ffqY7+rdtm1bubm5ycWleElgAAAu58/cPCV8s1+3N/FWSN3qeuOzH/T+x2tlXJBcTRc0fXBb1TEyVTXvrPkakrcAcO17b/1+fbzjWEHh/Fnp7AlVuXBGD3a8SWN69lTLBgWLTL777jsdOXJEZ8+eVevWrSXJvNAEuJ6RwAWAYrqQl6eD6Rnm1bN7U06ak7QHT5xVfr5x6QZizq6ST2PJvaFUxfqNabcbfRQb3khN/GrK3c1VL36xWzfW9tQNtT10Yx1P1a/hLgeH0r2hzc3N1ZEjR+Ts7Ky6dQtWN3l5ecnV1VVVq1bV+fPnzV9T5SYxAICykJ9v6P+2HNELX+zSoVN/KtjPU05pe/TTvqOSpM4tGuidx+6Ssk5qy5YtOnnypAzDIHkLANeY03/maunWo5q38ZCm92muo6mpmv3FRq3dc0zy8JLOntCNdTw0ZmBbDe3SWtU93Cyub9iwoY4dO8ZqW+AfSOACwP+zd5/RUVVfA8afKem99056IYRA6L03UWyg0uyAoOhrLygW/lZEBbtgwUJRUIpSpPceaggQIJAe0pNJZua+H0ZHkSaQIQnu31qu5dy59549Crfsc84+f6M3GDhRUGpO0h7OKf4jUVvE0fwSDJo/yxzY/DWa1iYEAjVoKgqIs68h0s+DQC83pu3VAeBgrSHG25FoL0eivR2J9nKgZZArzTz/qlX7/k2J9fYbsrKy2LlzJ+7u7uYErlqtpl+/flhZWdVbO0IIIQTA2qNFPLpwP1tPlgDgbKViT/pejOVFuNjb8OaIXozu3gK1Wo2iuOPg4ICfn58kb4UQ4jphNCqsPlrE51tOMG9PDtV1RgB6vb2YqtNHAFCrVdwQFczYvt3plhiGSqWirq6O3bt34+npaX5v8fPzo3///vLeIsQ/SAJXCPGfYzAYOVlUyuHTfyVpD+cUkZlbzJG8M+jR/pWg1ddClanUAWotBMSd95xqFdzVNYUvbk82b7vpSCGRno74OdtY7CU1Pz+frKwsQkJCzLVtg4KCOHLkCH5+fmeNbpKHICGEEPXpcEEFTyw6wI/puQDYadXY1xRRlHUMFIUhbWJ55ea2FOVmoyimeocqlQp/f/+GDFsIIUQ9qa4z8OaqI3yx5STHiqv++qKuGsoKqaooxtvFgXt7pnB/r1SCPF3OOv7w4cMcOnSI7OxsfH190Wg0gLy3CHE+ksAVQlyXjEYjJwvL/qpH+7dk7dG8M9TqDX/sqQJXvz8Stt4QEAx/1IcFiHBS83g7H5r5udPM152uH2/Hx8nGPJI22tuRKC9HmnnaY6PVnBVD5wjPev9d/5xump2dTVZWFoqimBO4tra29OnTp97bFkIIIf5u9ZEifkzPRa2CaCc4kL6TaqMePzdHPri3PwNTI1m0aBE6nQ5XV1fi4s7fCSqEEKLp+Pv7iLVGzUcbsjhVpkOtGDGWF0FFIeiqaBcdxNi+gxjSNg4bq79ST0aj0bweR1RUFPn5+URFRZm3CSHOTxK4QogmzWg0svFQNvtO5p9V9uBIbjG6OgNobc4ud2DlDi72WJeeItzHjWa+7vxa4sQfs3wAsNKoiPBwINrLgU4RHtzX+a9Fw448070BfqXpQSk9PZ0TJ07QuXNnnJycAAgNDUVRFEJCQhokLiGEEP8dOr2Bo0VVxPqY7kGjWgczf+dxtu3czYGjRQDc17Ml/xveA1cH04IzrVq14vjx40RGRjZY3EIIIa6OoijsPFXK51tOsjKzkN2PdiYzp4jpS7ZSdCIL6vQYK89gb63ljk6JjOnTiuQwv7POUVVVxe7duzEajbRv3x4ArVZLly5drv0PEqIJkgSuEKJJKiqv4osVO/nwt20cyS8zlTfQ6/7awT8GrO1AdW5PblSQD/sfH4lGY/pu8rIM7K005lG1Ye72aDUN2wNsNBopLy/HxcU0zUilUnHmzBmqqqo4efKkeRSTu7s77u7uDRmqEEKI65yiKMzZncOTiw5gUBQOPtGVkvIqxn+2hCUb9wMQ6efOJ2MG0Trch7q6OsCUwPX395eSCUII0UQVVuj4Zscpvth6kt2ny8zbU5//jj0HMsyfI/3cGXNLL0Z2SzZ34P1TXV0d2dnZAJSVlcliykJcJkngCiGaDEVR2JyRzYxft/Hd+r3Uqu3AxRuCw3DSGhkdbUOkvwfNfN15+NfjHCyowlarJtLL4awFxOJ8nMzJW4DnekY14K86V3V1NUuWLMFoNDJ48GC0WtOlOjY2loiICHx9fRs4QiGEEP8VG7OKeXThfjYePwOAn7MN//t5G+/++DsllTVo1CoeH9ye527pTE1VBcuWLUOr1dKjRw+sra0bOHohhBBXYm9OGS/+lsGCfbnUGUw1zLUqsKotp7owhz015ajVKga0jGJs31b0SAo/pwSCoiiUl5ebE7UuLi4kJyfj6ekpyVshroAkcIUQjV5lTS2z16YzY+lWdmblgYM7eEWBjb15H393Z94Z3dVcj+k7Hy9cbK0IdrVDrW68q1wXFBSQmZmJs7Mz8fHxgKmGrZWVFQaDgYqKClxdXQHw9vZuwEiFEEL8lxwtquSpRQf5YfdpAOytNdyT6s+uXbt48esNALSM8OOzMTfQPMzUsahS7FCr1ajVaurq6iSBK4QQTUR1nYGS6jr8nG0BMCgKc/fkAOBuZaQk/xT6siL0RgOezvbc068D9/dqSai323nPV1NTw/r16yktLaVfv37Y2prOK+V0hLhyksAVQjRa+0/mM2PpNr5cvZuyKh04ekBQEmhMly47KzV3tgzkoQ5hJPqd3Yvb3N/lfKdsUDqdjvz8fLy8vMwPMTU1NZw8eRIXFxdzAlelUtG9e3fs7OzOWrBMCCGEuBaOF1cR+79V1BqMqFQwIjUQf6Wct+f8Qk2tHjtrLS8P68b4/mlo/jbiytbWlk6dOmFnZycriAshRCNmNCrsySljWUYByzIKWHu0mIHxPvwwPJXKmlo27z2Mn1JKzulTFNdWA5AWGcDYvq25pV0cttYXv8bb2NhgNJoWGSkuLpZSOkLUA0ngCiEaldo6PT9tOcj0pVtZve+4eXszP3fatUjgywMVBLvZMa59KHenBeNu33hH9/x9hVWAdevWUVRURKtWrQgLCwNMo2rj4uLw8fE561h7e3uEEEKIa+Xvq4qHuNvTN8aLyloDd7fw4vUfljPzWC4APZLC+eiBAYT7ulNdXc3aTZvOuo/JtFghhGi8vtp2kqUHC1h2uICCitqzvtt6vIgHP/yZb9ftpbTKtLaIrbWWod2SGdu3NS0jLpyENRgMZGVlERYWhlqtRqVS0bp1a6ysrOS9Roh6IglcIUSjcKKghI+XbefT5TvIK60ylUnwjyXWTcvUIc3pkRSOUYEhB/LpF+vd4IuMXUx1dTUbN26koqKCgQMHml+Ivb290ev1ZyV1bWxsSEhIaKhQhRBC/McpisKCvbm8tCyDX+5Ow9/FNEPk01sS+d/8Ndz5xm8YjApujra8M6oPw7s0N9/XDh06REFBAdu3b6dPnz7n1D8UQgjRcCp0enafLqN92F8LHn+wPovNJ0oAsLdSE+asxVhVypGs42Qdq+TDP/YL93Hjwd6pjOreAg+niydgFUVh5cqVnDlzBpVKRXh4OIB5MWYhRP2QBK4QosEYjUZ+23WEGb9u45ftGRhVWnD2QhXcDEVtujzV2TvQs3kEKpUKNTAooXEt4FVRUcGpU6ews7MjODgYMCVlS0pK0Ov1lJaWmmvYJiQkkJiY2IDRCiGEEH/ZdrKERxfuY83RYgCmrMxk2o0JrEw/yn0zfuZIrmnhsts7JDB1dB98XB3POj4hIQGdTkdcXJwkb4UQooEZjAo7skv5LSOfZRmFbMgqxqhA0Uu9cbGzQlenp52/HUpVGadPnyL7WA77UMzHB3o40y8lkhvTYuiVHPGvr+sqlYqQkBBqamqk9rkQFiQJXCHENVdYVskXK3fx0W/bTC+HNg7gEYrK0Q0FFQoQ7GbH2HamMgmNqQ5sRUUFtra2aLWmy2dubi67d+/Gy8vLnMBVq9W0bdsWJycnHB3/etltTL9DCCHEf9eJM1U8vfgg3+w4BYCtVs3EzuHc1zqQuz9YwOcrdgKml/kZ9/dnQGo0YJoie/r0aYKCggDQarWkpaU1zI8QQggBwLJDBXy86TgrDhdyprrurO8CXWx4Y9FW9mRksSL9GFW6v77XatS0jwmmX0ok/VIiiQ/2/lfvKzqdjr179xIREWEeqNKsWTPCwsKk/rkQFiQJXCHENaEoCpsyspmxdCs/bNiHrs4AgIu9Df5RsRwoVVCAzhEejO8QxqB4n0ZXJmHVqlXk5+fTvn17AgICAPDx8cHX1xc/P7+z9v3nZyGEEKIxeOm3DF5bcZgavWlxmbtaBjK5TzRbDh4j7fEPySupRKWCMX1a8eod3XG2N5VUMBqNrFmzhoKCAvR6vbmWuxBCiGunpLqO3zMLSQt2M5e8ySyqZO6eHABcbLUkettja6gi6/gJMnfl8Mquv473dXWkX0tTwrZHUjguDraXHcPu3bvJysqirKyMLl26mGZKqtUyE0MIC5MErhDCoiqqdcxem870pVvZnZUHGitw8iHWTcOjfVtwe4cEDhVWMWPDcR7qEEaSf8MvflJTU8PBgwepqKigQ4cO5u2Ojo4UFBRQWVlp3ubk5ESnTp0aIkwhhBDislXo9NTojXSO8OCtgXH42qsZ+/ECFmw5BEBsoCefPDiI9rHBZx2nVqvx8vKipKQEGxubhghdCCH+c+oMRjYfP8OyjEJ+yyhgy4kzGBWYPiSRB9uFApDia88NzZwoLSpg24HDrDvw1+JkarWKtlGB9EuJpG9KJMlhvlc0K/DvizPHx8dTXl5OfHy8zDAU4hqSBK4QwiL2nchnxq9b+XLVbsqra8HGAbVPOIq9Kwoq2qUFcXePZABSAq355FbXBonTYDBQXFyMWq3Gw8MDAI1Gw+HDh1EUhcrKShwcHABTrb/mzZvL1CAhhBBNgqIoLD6QT4CLLckBpsVknu4RSYcwd/rHevHJ8h088dVyyqp0WGnVPHVTR54e0hEbq79eEf750h4WFma+LwohhLCMrOIqJvy0l98ziyjX6c/6LtrLgeP5Z3j660wW7zhsGiTzN17O9vRNiaRvSjN6NY/A/RKLkF1MeXk5u3btwsXFhaSkJAAcHBzo3r37FZ9TCHFlJIErhKg3tXV65m8+wIyl21iz/zigAkc3bEL80altMP6xX6dwdwbGNcxiZIpiKtT/9xW09+7dS0BAAO3btwfAysqKhIQEHBwczirEb2t7+VOMhBBCiIaw61Qpj/28nxWHC+kY7s7qMe1QqVS42lkR7aal6wuzWLv/BABpkQF8OmYQCSE+5uONRiO7du2iqqqK9u3bo1KpUKlUkrwVQoh6VlihY8XhQmy0agYnmsqwudtbsehAPgajgoe9FR1C3XDX1pGfm8P6vfv435Ya8/EqFbRuFkDfP2rZtozwq7dyBuXl5eTk5FBQUEBMTIwsUiZEA5IErhDiqh3PL+HjZdv5dPkO8ktN5QXUahVOEc0p1WvQATZaNXekBPBQhzDzKKBrbfv27WRnZ9O+fXs8PT0BUw3bw4cPn5OcjY2NbYgQhRBCiCumNxhZfCCfz7ac4Of9eSgKWGvUtAl2o86ggGLgjQUbeOmH1dTqDTjYWvHaHT0Y06cVmn/UnS8vL+fo0aMYjUYKCgrw9vZuoF8lhBDXF53ewPpjZ1iWUcCyjAJ2nCpFUaB1sKs5getgpeHpTkHk5Bew88BRFizadNY53B3t6N0ign4pkfROboaXS/10rhmNRqqrq82ddX5+fsTFxREcHCzJWyEamCRwhRBXxGg08uuuI8xYupVFOw5jNCpg44CvmyP39WzJvT1S+Gx7Lp9uPsGY9qHcmxaMp+O1qZlXV1fH6dOnqaioID4+3rxdp9Oh0+nIy8szJ3Dd3d0ZNGiQ1G8SQgjRpH2x5QRPLz5IbrnOvO22ZH9e6xdLmIc9Ww5nc8/0haQfzwegb0ozZtw3gBBv1/Oez8XFhVatWmFlZSXJWyGEqCd3fL2DH/fmUF1nPGt7op8TrQOd+Wb1bpbszGTpzkyKyqvP2icl3I9+KZH0axlJ62YB53S8Xa3y8nLWr1+P0Wikd+/eaDQaVCoVCQkJ9dqOEOLKSAJXCHFZCkor+WLlTj78bRvH8kr4s0yCk08Q5UYt7w9vyZDm/gD8X1cHnukRibaeHy7+qa6uDr1ej52dnfnz5s2bUalUREZGmnuLY2JiiIqKwt3d3XysJG6FEEI0RVW1egxGcLI1Pc7bajXkluvwcrRmeMtARrcOJs7XiYpqHY98vpR3F21CUcDT2Z53R/dhaMfEc+6Bx48fx9PT0zzyKiQk5Jr/LiGEuB7klNWwPKOALSdKmHZjgvl6W2c0Ul1nxNfJhh6RnkS5WVFeXMjavZl8sDGb95W/zuFib0OvZNMo2z4tmuHr5lTvcRoMBjQaDQD29vbodDqMRiOlpaVnvTMJIRqeJHCFEJekKAobD51k+tKtzNmwn1q9ATRW2HgFoXHxpsoA5UZTmYTjJX/1FNtbW/4Sc+TIEXbt2kVISAipqammdu3tCQgIwMHBAaPxr95teQgRQgjRlCmKwraTpXy25QSzd5zi6e7NeLJ7JAA3Jvoyb0QqA+J8sNaaOk5/3ZnJ/R/+zPGCUgDu6pzE26N64+l87lTbQ4cOsXv3btzc3OjWrZv5hV4IIcSlVdXqWXO0mGUZBfx2qIC9ueXm78a2DyXGx5R8ndA+hNaeatIzj7N0+W6+/qP83J+SQnzo1zKSvi2a0TY6CCutZa7FpaWl7Nq1C6PRSNeuXQHTQs7t27fH2dlZyiUI0QhZJLvSuXNn7r77bm655RbziDghRNNTXq3jmzV7mLF0G3uO/7G6qUqFW1gsZSp7dApggAAXW8Ze4zIJf3JwcMBgMFBRUXHW9j8XJBNCCCGauqLKWr7ens1nW06QnvNXUmBlZqE5gWtrpeGmJFPtxJzicp74ahlfrd4DQIiXCx89MJDeLZpdsI3AwEAOHjyIv79/vS1+I4QQ/wXvrzvGowv3U2v4a+CISgUpAS70iPIkK6+YH9ftYsnOw2w4eBKD8a9hto621vRsHk7fFFPSNtDTcmuFKIpiHglsZWVFfr6ppE5lZaV55sWfZeaEEI2PRRK4LVq04LHHHuOhhx7i1ltv5e6776ZNmzaWaEoIYQF7j+cx49dtfLV6N+XVtQDYWmsZ2iGBB3qlMnbxUbadLKVDmDvjO4YxOMEXKwuXSfhTbW0tlZWVuLm5AeDr60u3bt3w8PC4Ju0LIYQQ14qiKIz+fjezd5wyJwZstGqGJPpxd1owXSLOvvdtOZzNtEWb+WHDPur0RlQqmNC/DZOHdsXR7twO1rq6OqysrABTh2jfvn1l1JUQQlxEblkNzy45xMhWgXQIN12Dw9ztqTUYCXazo2ekF+1DXVDXVLBu31G+/nEr/ysuP+sccUFe9G3RjH4tI+kQE4y1lWVnLZaVlXHgwAG0Wi0tW7YETDMWW7dufVbZHCFE42aRK8XUqVN58803WbhwIbNmzaJTp040a9aM0aNHc9ddd+Hj42OJZoUQV0FXp2f+pgPM+HUra/efMG3UaHEPikDl6M62hzsS6uUMwFQre+ys1KQEul7TGM+cOcOaNWtQq9X06dPH/NIpPcVCCCGuF6dLa/B3sQVMddrrDEZqDUZaBDhzd+tghqUE4Gb/V5K1tk7P3I37mbZoM5sPnzJvbxcdxNujepMWFXjedrKysti1axedO3c2d4pK8lYIIc7PaFT4aNNxnlp0gNIaPZ4O1uYEbtdmHiwakcS+IydZsnMns+aeQP+30bj2NlZ0SwyjX0okfVOaEertdk1j1+l0HD9+HI1GQ2JiovlaL3XOhWhaLNbVo9Vquemmm7jpppvIz8/n448/5rnnnuPpp5+mX79+jB8/nm7dulmqeSHEv5SVf4aPf9vOp8t3UFBWBYDa1oGAsGbk1FpRbFSgxsiiQ0WM/SOB2z6sYWrJOjk5odVq0Wg0VFdXmxO4QgghRFOm0xv4KT2Xz7acYPnhQnZN7EySv+me+0yPSB7tHEGLwLOn1eaVVPDxb9uZ8etWcs6YyghZazXc3iGBh/q1JrVZwAXbUxSFkydPUltby9GjR80jsoQQQpxrz+ky7p+7h03HzwCQGuRCn2gPft56iMU7DrN4+2FOFJaedUyknzv9UiLp1zKSTnEh2Fpfm/eWyspKMjMzcXBwoFkzU9kcT09PYmNjCQgIkI46IZowi68wtGXLFr744gu+++47vL29GTlyJKdOnWLAgAGMGTOGN99809IhCCH+wWAw8uuuTKYv3criHYdRFAAVrj7+OHgFcKrSyMkaAIX2oW6M7xjOjYm+1zxOo9HI6dOnCQw0jR7SarV06tQJe3t7WVxFCCFEk5eeU8Znm0/w9fZsiqrqzNtXHykyJ3Bjfc5edXz7kdNMW7SZ79btNS0qCvi5OfJg71bc16slPq6Ol2xXpVKRlpZGVlYWkZGR9fiLhBDi+lGp0zPptwzeWXMUg1HByUbLox2D2bU7nd7PrDZfgwFsrDR0TfhrlG0zv4Yp75aXl8ehQ4dwcHAgPDwctVqNSqUiMTGxQeIRQtQfiyRw8/Pz+eqrr/jiiy84fPgwAwcO5Ntvv6V3797motkjR46kT58+ksAV4hrKL6ng85U7+ei37WTll5i390gK55ZOyYxZcoKSSiPWGjVDW/jzUIcwWga5NkisRqORFStWcObMGTp06IC/vz9gGoUrhBBCNGXHi6u45cvtbD1ZYt4W4GLLqFZBjGodRLjH2fUI6/QG5m86wLRFm9lw6KR5e5uoQMb3T2NIm9hL1lAsLi6mqKjInLC1trYmKiqq/n6UEEJcZ95ec5Q3Vx0BYEiiLwmOOl7/8ieqdKYOt1BvV/q3jKRvi0i6JoZib3NtR7fqdDqysrJwdXU1l6kMDg4mNzeX0NBQc+5FCHF9sEgCNzAwkIiICEaPHs3IkSPx8vI6Z5+kpCRatWplieaFEP+w93geU35cx5wN+809xY4ubrSIa8and6QR5W+qIbuvTI23ozX3poXg7XTuYifXklqtxtvbm8rKSoxG46UPEEIIIRopRVE4VVpDoKsdAH7Othw/U4VWrWJQvA93pwXTO9objfrsl+2C0ko+Xrad6Uu3cvqPRXCstGpua28qk9A68vz1bf+poqKC33//HYPBgJOTE76+135WjRBCNAWKopgTnxM7hbM8o4Bb4z35aska5v1RZ7xzfAjvju5LUqhPgyZJDx06xMGDB/Hx8TEncLVaLe3atWuwmIQQlmORBO6KFSvo2LHjRfdxdnbm999/t0TzQog/7D+Zz4vfr2bOxn3mMgnh4eHg4sPRklrW5hpRWdma9393cEKDxaooCtnZ2Xh6emJnZ3rBjY+PJyYmBhubhk0mCyGEEFcit6yGWduy+WzzCXQGI0ef7o5GrcJaq2bO8FRivB3P22G682gO7y3ezOy16ejqTB2vPq4OPNArlft7peLnfnmzURwdHQkNDaWqqgp394apYy+EEI2ZwagwfX0Wiw7ksfieNNRqFVZq6OZZxyPTv6dOb8TZ3obX7+rJvT1TUKvV1zY+g4Hs7Gzc3d3NMxIjIiLIy8sjKCjorMSzEOL6ZJEE7gsvvMD8+fNxdXU9a3tZWRmDBw9m5cqVlmhWCPGHg9kFvDRnNd+t22tK3Ko1xMXHkafYc7RKDyW1WGvU3N7C/5zRPg0lPT2dgwcPEhQURNu2bQFTD7JWa/FS3UIIIUS90RuMLD6Qz2dbTrDoQD4GowKAo42GQ/kVxPmaXrw7RXj84zgDP20+yLTFm1m7/4R5e2qEPxMGpHFLu3hsLlEm4e90Op154U+AFi1aoFKp5AVfCCH+YUd2CffP3cO2k6aFyObuySHE3sjdHyxg38kCAAamRjH9vv4Eerpc7FQWs337drKysoiIiDAvPOng4EDPnj0bJB4hxLVnkczI6tWrqa2tPWd7TU0Na9euvezzffDBB7zxxhvk5ubSvHlz3nvvPVq3bn3B/adOncqMGTM4ceIEnp6e3Hzzzbz22mvY2tpe8BghrgcZpwt56YfVfLtuL8Y/Xhg7tYhjR5Uj+ysNgB4/ZxvGtAvlvjYNXybh74KCgjh8+DBOTk7SgyyEEKJJmr8nh7Hz08kt15m3tQt14+7Wwdya7I+jzbmP3oVllXy6fAfTl27lZGEZAFqNmlvaxTG+XxppUYGXfU88c+YM69evx9vbm1atWqFSqa75aDEhhGjsymv0PP/rQaatPYZRARdbLS/2imLD9t3cvngzigJezva8d08/bm0ff83eTxRFIT8/Hzc3N6ytTXV1Q0JCyMvLw9Hx0gtVCiGuT/WawN2zZw9guuDs37+f3Nxc83cGg4GlS5cSEBBwWef8/vvvmThxIh9++CFpaWlMnTqV3r17c+jQIby9vc/Zf/bs2Tz55JN8/vnntGvXjoyMDEaOHIlKpeLtt9++uh8oRCOVmVPE5Dlr+HrNHnPi9obW0Uy6rQuR/l6Ev7qCMA97nuoWyZAkP6y1Df8SV1xcTFVVFYGBpvp9bm5uDBgwQMolCCGEaDIqdXoqaw3mDlE/Zxtyy3V4O1ozPDWI0a2DiPU5f7mDPVm5TFu0mW/WplNTqwdMiYIHeqfyQO9U/N2drzguRVGoqqqisLCQ2tpaubcKIcQ/LNiby7j56WSX1gBwe7I/N0Y68sTMn82LPQ/v0py3R/XGw8n+msa2ceNGsrOzSU5ONi826e3tTf/+/aUzToj/sHpN4CYnJ5unZnXr1u2c7+3s7Hjvvfcu65xvv/029957L6NGjQLgww8/ZNGiRXz++ec8+eST5+y/YcMG2rdvz7BhwwAIDQ1l6NChbN68+Qp+kRCN25HcYl6es4avVu82TdFUqYiNj8fZ3Yv5Ezqj/qM8wvqHOhDubm/+3NDy8/NZvXo1Wq0WDw8Pc81becEUQgjR2CmKwtaTJXy2+QTf7jzNsJQAPrw5CYA2IW4svqc1PaK8sNKc+5KtNxj4eWsG7y7axOp9x83bW4T5MmFAG25rH4+ttdVlx6TX6yktLcXDw1SWwd3dnVatWhEQEGAevSWEEMLEYFR4aVkG2aU1hHvY879+0Sxet43bXt8FQLCnCx89MIA+KZHXJJ6ysjKcnJzMI3y9vb3Jzc3FYDCY95ESOEKIek3gHjt2DEVRCA8PZ8uWLXh5eZm/s7a2xtvb21yH69+ora1l+/btPPXUU+ZtarWaHj16sHHjxvMe065dO77++mu2bNlC69atOXr0KIsXL+auu+66YDs6nQ6d7q+pbmVlZf86RiEawrG8M7w8dw2zft9lTtzGxcWTp3LkQJUeqsr5eX8eNySYVplu5unQwBGfzdPTE1dX17MeVIRoiuT+IcR/R2GFjq93nOKzzSfYm1tu3r7lxBlz6R+VSkXfWJ9zji0ur+KzFTv5YMkWjheYaixq1CqGtIljfP802sUEXfH9sLy8nFWrVmEwGOjbt6+5MzQsLOyKzicsT+4dQlx7eoMRowLWWjUatYqPb05i7p4cEpz1jJv2LXkllahUMK5va165oztOdtdmYMn69es5deoUHTt2xM/PDzANQgsJCcHK6vI79IQQ1696TeCGhIQAYDQa6+V8hYWFGAwGfHzOfhD28fHh4MGD5z1m2LBhFBYW0qFDBxRFQa/X88ADD/D0009fsJ3XXnuNF198sV5iFsKSjueX8Mq8NXyxchd6gxFQERcbS6HGhf2VdYCeUHc7nusRRf/Yc0uMNJSqqiqOHDlCQkKCuQ5f165dZYEy0eTJ/UOI/4aHf9rLjA3HqTWYnnFttWqGJPlxd1owncM9Lph83Xs8j/cWb+Gr1bup/qNMgoeTHff3SuXB3qn1shiOg4MD1tbW6PV6qqqqZDZLEyD3DiGura0nSrh/7m4GxPnwUp8YAPwc1BxM382ULaa8QkyAJ5+NHUS7mGCLxlJbW3vWzAgHBwdUKhUlJSXmBK68IwkhzqfergwLFy6kb9++WFlZsXDhwovuO2jQoPpq9hyrVq3i1VdfZfr06aSlpZGZmcmECROYPHkyzz333HmPeeqpp5g4caL5c1lZGUFBQRaLUYjLdaKghFfnreXzlTup05teHjsmRpCp8mZ/eS1QR6CLLc/2jGRUq+BGUeP2TwaDgeXLl1NTU4ODgwPh4eGAPJiI64PcP4S4Ph0vriLAxRbtH2UQHG201BqMpAS6cHfrYIalBOBqd/6RUQaDkV+2ZzBt0WZWph8zb28e6sOE/m24vUMCdjZXPqqqqqqKo0ePEh8fb+4Ubd++PXZ2dpc10000HLl3CHFtlFbX8eySg3ywIQtFgdNlOh7vEsF3a/fw2KzfKK3SodWoeeqmDjxzcydsrCz3fmI0GtmyZQvZ2dn07t0bJydTffTo6GiioqKwt7+2dXaFEE1PvV2hBg8eTG5uLt7e3gwePPiC+6lUqrNquVyMp6cnGo2GvLy8s7bn5eXh6+t73mOee+457rrrLu655x4AEhMTqays5L777uOZZ545b9FvGxsbGa0gGqXswlJem7+OT5ZvNyduuyWG8eLtXWgfE0zrd9eioOLp7pHc2yYYW6vG9+Km0WiIjo4mOzsbd3f3hg5HiHol9w8hrh86vYGf0nP5bMsJlh8uZMGoVgyMNz1vjmkXys1JfiQHXHjEbEllNZ8t38n7S7aYF8BRq1Xc2DqG8f3T6BgXctVlgwwGA8uWLUOn0+Hk5GSe/Sarkjctcu8QwrIURWHenhzG/7SXnDJTuZI7UgJ4qI0/N7w229y5lhrhz2djB5EUev7cwtUyGo3m/INaraaurg6j0cjp06eJjo4GMK8FIoQQl1JvCdy/l02orxIK1tbWtGzZkhUrVpiTwkajkRUrVjBu3LjzHlNVVXVOkvbP0QiKotRLXEJY2uniMl6bt46Pl22nVm/q8IiLiULj6sOP4zvhbGsaufPdnS3xc7bB3rrxjGbV6/Xs27ePsLAwnJ1NK2hHRkYSFRUl9W6FEEI0OntOl/HZlhN8vT2b4qo68/atJ0vMCVx/F1v8XWzPe/z+k/m8v3gLs1btpkpnOt7d0Y57e6Ywpk8rgr1c6y1WjUZDZGQkubm55nusEEKIv5w8U80D8/aw+EA+YFoL5P0b49l76Ahdn/mU6lo9dtZaJg/txoQBaWgtMHNBr9eTnp7OqVOn6N27t7mWbWJiIgkJCbi5udV7m0KI61/jyfpcwMSJExkxYgSpqam0bt2aqVOnUllZyahRowAYPnw4AQEBvPbaawAMHDiQt99+mxYtWphLKDz33HMMHDhQppWJRi+nuJwpP67jo9+2oav7I3EbHUmNgxf7z+ggr4rp67N4srtpRdSIRrY4GcDOnTs5duwYxcXFdOnSxTy9UwghhGhM0nPKGP39LradLDVvC3SxZVTrIEa1CibM48LTWY1GI4t3HGbaos0s233UvD0h2JsJ/dMY1ikRexvrCx7/bxUVFbF7925SU1PNCduYmBhiY2OlU1QIIc7DoCj8nlmIlUbFk92aMbCZM2M+WsC2I6cB6JoQyidjBhHha7mZgRqNhtzcXKqqqsjOzjYvKunq6mqxNoUQ1796S+BOmzbtX+87fvz4f73vbbfdRkFBAc8//zy5ubkkJyezdOlS88JmJ06cOCs59Oyzz6JSqXj22Wc5deoUXl5eDBw4kFdeeeXf/xghrrG8kgr+9+M6Zvy6jZo/FjmJjYxA7+zL/uIaqNXhbKtlYqdwHmwX2rDBXkJcXBxFRUXExMTIy6UQQohGK8rLAWuNGiuNihvifbk7LZieUV5o1Be+d5VW1vDFSlOZhCO5ZwBTmYRBqdGM759Gl4TQer33HThwgMLCQtLT02nfvv0f7UmnqBBC/N3RokrCPUwDW0Ld7Zl5ewuiveyZu3oH7Z76Ab3BiIu9DW+N7M3o7i3q9TpdV1dHZmYmBQUFdOzYEZVKhUqlonnz5qhUqguWfhRCiMulUuqprsCfvUqXbFCl4ujRo5fesQGVlZXh4uJCaWmpTE8TFpVfUsHrP61n+tKt5tWp06ICKXcNZX9BNQCONhomdAzn0c7huNlf/Wie+qQoCkeOHMFgMJjrOP25XZK3wtIa47W6McYkhPhLdZ0Ba43anKQtqDDVRvRyvHg90kOnCnlv8WZm/r6LyhpTmQRXB1vu6WEqkxDmUz/TYfV607PAnwt9lpeXc/DgQRISEqROYj1qbNfqxhaPEE1FSXUdTy06wMebjrPywbZ0jvAEYMPBE9wzfSEHsgsBuDEthvfv7Ye/e/3//aqrq+Pnn39Gr9fTuXNn80AzcX2S67VoSPU2AvfYsWOX3kkIAUBhWSVv/LSB95dsMdfLax0ZwIu3daF3i2bcNXsnx0pyGNc+jMe7RuB5iRfLhpKbm8uOHTtQq9UEBASYF1GR5K0QQojG5sSZKgZ/sZUekV68PjAOuHji1mg0snRnJu8t3sLSnZnm7XFBXozvl8adnZNwsK2/jtXTp0+zY8cOwsLCiI+PB8DJyYlWrVrVWxtCCHE9UBSF73ed5uEF+8grN3XE/Z5ZREt/J57+ZgXvL9mCooCPqwMf3NufIW3j6q3tqqoqjh49SkJCAgBWVlbEx8djbW2Nh4dHvbUjhBD/1Ohr4ApxPSkqr+LNBRt4b/Fm8wiemPAQ7H2C+WpEa6K8nQD434BY3hwYh6/z+RdMaSx8fX0JCgrC09MTe/sL1woUQgghGtLao0UMmbWNgopasktrLto5WlZVw6zfd/Pe4s0czikGQKWCgX+USeiWGGaRjkq9Xk9VVRUnT54kNjZWSiUIIcR5HCmsZMy8dH7LKAAg2suBD29OoqbsDPETpnOi0FTXfFS3ZN4c0Qt3p/p7R6murmbFihVUV1cTGhpqHrzy95mIQghhKfWWwJ04cSKTJ0/GwcGBiRMnXnTft99+u76aFaJJKC6v4u2fN/LuL5upqKkFIDosCEe/ULbnVEFuFS8vz+TLYS0ACHBpnNMkc3NzOXz4MO3atUOj0aBSqWjbtm1DhyWEEEJc0Ecbsxg3fy96o0KyvzM/jWp13uTt4dNFvL9kC1+s3El5tele7Wxvw93dWzCub2vC63nBm6qqKnQ6nXk18qCgIPR6PcHBwZK8FUKI85i+PotHF+6jRm/ERqvm6e6R3NPKnye//I2vVu8BINTblY8fGEjP5Ih6b9/W1hYfHx+Ki4tlxqEQ4pqrtwTuzp07qaurM//7hciFTvyXnKmo5p2fN/Luos2UVZmm90SHBeLiH86W05WQU4VGrWJkahDP9oxs4GgvTq/Xs3nzZnQ6HYcPHyYmJqahQxJCCCEuqFZv5OEFe5mx4TgAtyX78/ltzbG3/uvx12g0smz3UaYt2sziHYfN26MDPBjfL43hXZrjaFf/ZYxyc3NZv349Dg4O9OrVC7VajUqlIjw8vN7bEkKI64WLrZYavZFuzTyZPiSBXRnHSX5kOgVlVahUMKF/G14e1q1ey9soioKiKObrdMuWLTEajVhZWdVbG0II8W/UWwL3999/P++/C/FfVFpZw9RfNvHOzxsp/SNxmxTig09EHMuOlcHpStQquCMlkOd7RdHM06GBIz6/vy9GptVqadGiBUVFRURE1H+PthBCCFFfFEVh8BdbWXIwH5UKXukbw5Pdmp01kGDRtgwem/UbB08Vmrf1bxnJ+P5p9EgKt+goWHd3dzQaDVZWVuh0OlmgTAghzqO4qpbDBZWkhZhmKgxLCcDDwZp4D2vGfvIzP2/LACA+yItPxwyiTXRQvbZvMBjYunUr1tbWpKSkAKDRaNBoNPXajhBC/BsWr4F78uRJwDQtTIjrXVlVDe/+spm3f95ISWUNYHqgmHRbF25qE8urKzJZnlXGrc39mdQrihgfpwaO+MLKysrYvn07iYmJeHqaVnQNDg4mODi4gSMTQgghLk6lUjGyVRDrs4r55o4UBsSdvSr4e4s2M+HzJSgKONlZM7pbC8b2bU2kv2UWoCkuLiYvL4/Y2FgArK2t6dGjBw4ODjI7TQgh/kFRFL7ens2jP+9HrVJx8ImuuNpZoSgKx4+f4LaXl1FWpcNKq+aZIZ146qYOWFvVf2qjsLCQEydOoFKpiIiIwMXFpd7bEEKIf8siCVy9Xs+LL77ItGnTqKioAMDR0ZGHHnqIF154QaYbiOtOebWOaYs289bCDZypMCVumwX5EhAezeM9Y+kX5wvAhI7h3JDgS6Kfc0OG+69kZGRQUFDArl276N69u7xgCiGEaPRKqutwtTM9Z96a7E/3SE88HP6aSms0Gnn8y2W8tXAjAPf2TOHNEb1wtrfcoqGVlZWsWLECRVHw9vY2r1L+5+I3Qggh/pJRUMGDc9NZmWmaHRHn40huWQ0FZ8q4d8ZCVu8zlcVJiwzgs7E3EB/sbbFYfHx8SE5OxsXFRZK3QogGZ5EE7kMPPcT8+fN5/fXXzQscbdy4kUmTJlFUVMSMGTMs0awQ11xFtY73l2zhzQUbKCqvBiA8wJvQqFjWnKgk80QFlb9l0DfWB5VKhZOttlEnb/9eMiExMRGDwUBCQoIkb4UQQjRqRqPCs0sPMnPrSbY93Al/F1NC9u/J25raOoZP+5E5G/YD8Ood3Xnypg4Wucf9/X7q4OBASEgIiqJIqQQhhLgAnd7AlBWZvLoik1qDEVutmud7RTGhQyjvL97MC9+voqZWj72NFa8M68ZD/dLQaOq/1E1ubi7u7u5YW5vuH1FRUfXehhBCXAmLJHBnz57Nd999R9++fc3bkpKSCAoKYujQoZLAFU1eZU0tHyzZwhsLNlBYVgVAmJ8XzWLiWX2ykqNZppHnvaK8eKlPdKNPgOp0Onbv3o1Go6Fly5YA2NjYkJaW1sCRCSGEEBdXWl3HnbN38sv+PAAW7MvlwXahZ+1TVF7FDa99y/qDJ7HSqvli7GDu6JxU77EoikJ2djYHDx6kc+fO5gRAamqqRWvqCiFEU1ah05P6zhoOFVQC0Dvai+lDEikrK6PjM5+z42gOAD2Swvn4wYGE+bhZJI4jR46wfft2fH196dChg1y3hRCNikUSuDY2NoSGhp6zPSwszPwgK0RTVKWrZcbSbbz+03ryS00PGBG+bqS1TGF+RhnHssoB6BLhweQ+0XQIt0wtvfpWWlpKVlYWKpWKmJgYHBwa56JqQgghxN9lFFRww+dbOZhfga1Wzae3NueOloFn7XM0t5h+r3zDoVNFuNjb8OMTt9M1Mcwi8SiKwr59+ygrKyMjI4OEhAQASQIIIcRFONpoSQtxo7RGz9Qb4hkU58XkOWt4/af1GIwKbo62vD2yNyO6Jlt0YIybmxsajQZ7e3uLtSGEEFfKIgnccePGMXnyZL744gtsbGwA0wi/V155hXHjxlmiSSEsqlpXx0e/bWPKj+vIKzElbsN8XHn+ls7c2TmJH/fmMXv/dtqHujG5bwxdm3k2cMSXZjAYzCuoent7Ex8fj6+vryRvhRBCNAlLD+Zz+1fbKa3RE+hiy4+jWpEa5HrWPlsPn2LAq7PJL60kyNOZJc/eWe/1EmtqarCxsUGlUqFWq2nRogWFhYVER0fXaztCCHG9UBSFWVuz6drMgxB3U7L0nRviUatUpB87TfKjH5FxugiAW9rFMe3uvvi6WWbx57+XvHF3d6dXr144Ojo2+hmUQoj/nnpL4N50001nfV6+fDmBgYE0b94cgN27d1NbW0v37t3rq0khLK6mto6Pl21nyvx15JwxlUUI8naneVIS/ZqHMLK9aQTPkEQ/Vo1pS6dwj0Z/szcYDBw6dIhjx47Rs2dP86j4+Pj4Bo5MCCGE+HcW7s3lxplbMSrQLtSNeSNS8XU+eyGyX7Yd4ra35lKlqyM5zJdFzwzD371+69BnZGSwd+9eUlNTCQ4OBkyL3vj4+NRrO0IIcb04mFfOA/PSWX2kiIFxPiwY3QqVSoUWI09+uZwZv24DwM/Nken39WdwWqzFYikrK2Pr1q20adPGPIjFyckyiWIhhLha9ZbA/eeqjEOGDDnrc1BQUH01JYTF1dTW8enyHbw2fx2ni01lEQI9XWmZkszqk9X8cqScLXkZDE8NwsFGi1qtonNE4x91+6esrCwqKys5fvw4kZGRDR2OEEIIcVm6RXoS5+NEWrAbHwxJwEarOev7D3/dythPFmM0KvROjmDO/92Kk51NvcdRV1eHXq8nOzvbnMAVQghxrpo6A6+uOMyUlZnUGRTsrTV0DHdHUWDx9gwe+OgXsovKALinRwpvjOiJq4NlF37csWMHRUVF7Nixg44dO1q0LSGEuFr1lsD94osv6utUQjQYXZ2ez1fs5JW5azj1R+LW38OFtJYtWHOqhgWHTdvifZ14sXcUdlaai52u0dDpdFhbW6NSqdBoNKSmplJTUyMdK0IIIZqMwgodHg6me5mjjZZ149rjbKs9a+aL0Wjk6W9W8L8f1wMwunsLPrx/AFba+rlfnzlzBisrKxwdHQGIjo7GyclJ7qdCCHERyzMKeHBeOpmFplJ0/WO9+eCmROw1Cne+O49v1+4FINzHjU/GDKRbYvg1iat169bs2rWLlJSUa9KeEEJcDYvUwBWiqfkzcfva/LWcLDT1/Aa4OzGwU2vmH6nixz8St1FeDkzqFc2tyf5o1I27VMKfDh06xL59+2jVqpX5BdPbu37r/wkhhBCWtP5YMUNmbWNip3Ae79YMABc7q7P20dXpGfX+T+ZEwEu3d+XZWzrVW2mjw4cPs3PnTvz8/MwjtbRarYy8FUKIi/hh12lu+2o7AP7Otky7MZ4bE3z5du1eJny+hKLyatRqFRMHtuXF27tgb2O5Rc+NRiNnzpzBw8O00LS9vT3t2rWzWHtCCFGfLJbAnTt3Lj/88AMnTpygtrb2rO927NhhqWaFuCzVOlOphP/9uM484tbPzZGnh3Tknh4pZBRW8+Hu1YR72PNCryiGtQhAq2laK0n/fXqnjBASQgjR1Hy66Thj5qdTZ1D4ducpHu4UjrX27HvxmYpqbvzfd6zedxytRs2nYwYxomtyvcbh4+ODWq3GysrqrIVAhRBCXNjAeB8iPR3oE+PNy32jKa2oYuCr37J4x2EAEkO8+WzMDbSKDLBoHHq9nvXr11NQUECXLl3w9Gw65e+EEAIslMCdNm0azzzzDCNHjmTBggWMGjWKI0eOsHXrVsaOHWuJJoW4LFW6Wj76bTuv/7ie3BLT4mT+7k50at2S8ABvxvWLAyDJ34pl97ehc4QHVk0gcasoCqdOncLFxcVcgD86OhoXFxcCAwMbODohhBDi36szGJm4YB/vr88CYEiSHzNvTz4neXs8v4S+L3/NgexCnOysmfd/t9EzOeKq2v7zfqrT6YiIMJ3L2dmZfv36YW9vf1XnFkKI69nenDI+WJ/F+zclolGrsLPSsOvRTthq1Xz46zae+Go5FTW1WGs1PHdLJx4f3B5rK8tPDFar1Wg0GlQq1TkDzIQQoimwyJVy+vTpfPzxxwwdOpSZM2fy+OOPEx4ezvPPP09xcbElmhTiX6mo1jHj1228uWAD+aWmGkxBni50TEth3ek6vjtUjvZwBXe3CSHcw7QSaY8or4YM+bKkp6dz8OBBAgICaN++PQBWVlYy8lYIIUSTUlih45Yvt7PqSBEAL/WJ5pnukaj/Ub5ox5HT9H9lNrklFQS4O7H42TtICvW96vbz8vLYsGEDWq0Wf39/7OxMC+lI8lYIIc6vqlbPS78d5q3VR9AbFeJ9nRjXIQyAkwUl3DN9IesOnACgXXQQn44dRGzgtXvPUqvVpKWlUVlZiaur6zVrVwgh6otFErgnTpww15Kxs7OjvNw0Nf2uu+6iTZs2vP/++5ZoVogLKquq4YMlW3lr4QaKyqsBCPVxpX1qCmtP65i931T31sfJhie6RuDnbNuQ4V6xkJAQMjMzcXFxQVGUeqv7J4QQQlwrOr2Bdu+t53BhJY42Gr4elsINCecmZZfsOMwtb/5AZU0diSHeLH7mDgI9Xa643b/fN318fPD29sbT0xMrK6tLHCmEEP9tiw/kMXZ+OlnFpveswQm+3BDvS53ewBs/reelOavR1RlwsLViyp09GNOnFWq15Wc3Hjt2jOrqauLiTLMrraysJHkrhGiyLJLA9fX1pbi4mJCQEIKDg9m0aRPNmzfn2LFjKIpiiSaFOK+SymqmLdrM1F82caaiBoBmfu7c3q01s/aV883+UgB8nWx4olsz7msTjL1101jbr6qqin379uHo6EhsbCwALi4uDBw4UF42hRBCNFk2Wg2PdA7nrVVHWDC6NfG+Tufs8+my7Tzw0S8YjArdk8KY93+34eJwZZ2vBoOBw4cPc+rUKbp27YparUalUtG5c2fpCBVCiIs4XVrDhJ/2MndPDgBBrra8f2MigxJ82X7kNAMnL2B3Vh4AfVo048P7BxDi7XpNYisuLmbr1q0AeHl54eXVdGZVCiHE+VgkU9WtWzcWLlxIixYtGDVqFI888ghz585l27Zt3HTTTZZoUoizFJdX8e6izbz7yyZKq3QARAd48OzNnbi9QwKlNQambl+Ov7MtT3SL4N42IdhZNa3FSAoKCjh27BhWVlY0a9bMnLSV5K0QQoimxmhUyK/Q4fvHDJgH2oYwvGUgDjZnP6oqisLz3/7Oy3PXADC8S3M+eXDgVdVP1Ov1HDx4kNraWrKzswkODgaQ5K0QQlzCyO92siyjEI1axcMdw5jUOxrFaOCRz5cybfFmjEYFd0c73r27D3d0Srqm11V3d3eio6PRaDSyYJkQ4rpgkQTuxx9/jNFoBGDs2LF4eHiwYcMGBg0axP3332+JJoUAoLCskrcXbuT9JVsorzYVp48N8qZ1SnOqVTbmBwcPBw3L7m9Lsr8ztk0kcWswGKiursbR0RGA4OBgCgoKCA0NlaStEEKIJqu8Rs9ds3ewL6+CLRM64GZvjUqlOid5W1un557pC/lq9R4Anr+1M5Nu63LVCQEbGxuSk5MBpGa8EEJchjcGxjFmXjof3JRIc39n5m86wITPlnCq2FRC8fYOCbw7ug/ero7XJJ6qqipsbGzQaEzvd0lJ1zZpLIQQlqRSpKbBOcrKynBxcaG0tBRnZ+eGDkf8C3klFby1cAPTl26lsqYOgIQQX1omJ/HrsQpyy02jcFeNaUvniKbXA3vmzBnzYio9e/a8JjWjhGjsGuO1ujHGJERjdqSwkhu+2Mq+3HJstGoWjGpF7xjvc/Yrrazhpte/Z2X6MTRqFR89MJC7e6RcUZuKorBnzx5CQ0Nxcbnymrmi6Wps1+rGFo8Q51Neo+f5Xw/iYK3l5b4x5u2KopCVX8K4TxazeMdhACJ83fjg3v70btHsmsVXVFTEunXr8PHxIS0tTRK3wiLkei0aksWKfZ45c4bPPvuMAwcOABAXF8eoUaNwd3e3VJPiPyinuJw3Fqznw1+3UV2rB6B5mD8tmiey5Eg5s/aYVq8OdrPj6e7NaBPi1pDhXjF7e3tqa2sxGAxUVlbi5HRuPUAhhBCiKVmeUcCtX27nTHUdfs42/DiyFWnnuU+fLCyl38vfsPdEPo621sx57Bb6pERecbuHDh3i0KFDZGVl0a9fP5nFIoQQF6EoCj/tzWX8j3vJLq1Bq1ZxX5tggt3sqa3T89bCjUyes5rqWj1WWjVP3tiBp27qiJ3Ntb226vV6amtrKSsro66uDmtr62vavhB/MhgM1NXVNXQYoomwsrIyzxq4FIskcNesWcOgQYNwdnYmNTUVgGnTpvHSSy/x888/06lTJ0s0K/5DsgtLef2n9Xy8bDu6OgMArSMDGNWrDc+vPs3u3YUAhLrb8XT3SEakBmGtbTqjVs+cOUN+fj7R0dGAaXpnx44dcXV1RattGousCSGEEOejKArvrj3Gowv3YVQgLdiV+SNb4e9y7iJku4/l0u+VbzhdXI6vqyOLn72DFuF+V9V+WFgYp06dIiIiQpK3QghxEceLq3jox738vN+0EFm4hz0f3JRIsJs9a/cf54GPfmH/yQIAuiaEMv2+/sQENsxiYT4+PnTo0AFPT0+5tosGoSgKubm5lJSUNHQooolxdXXF19f3kjMHLJIJGjt2LLfeeiszZswwZ5INBgNjxoxh7NixpKenW6JZ8R9wPL+E//24js9W7KRWb0rcto0K4oXbOtMrOQKDUeGtLQU42Wp5pnskd6UGYqVpOolbgMrKSpYvX46iKPj4+ODq6gogxfeFEEJcF95efZTHft4PwIjUQD68Oem89eiX7TrCkDe+p7y6lrggLxY/c0e9rF5uY2ND165dpRyREEJcQJ3ByLtrjvHCb4eoqjVgpVHxf10ieLZnFJXVNYx+/ye+WLkLAC9ne94e1fuaL1Km1+tJT08nNjYWW1tTB6Cf39V18AlxNf5M3np7e2Nvby9lPMQlKYpCVVUV+fn5wKWvYRZJ4GZmZjJ37tyzhgFrNBomTpzIl19+aYkmxXXuaG4xr81fx8zfd6E3mBbIaxcbSkxcLDtya+iSGIZKpUKrUbH03jSC3eyaVOLWaDSaXyQdHBwIDAxEpVJJ77EQQojrzojUQGZsyGJchzAmdAw77wvOzJU7uXfGz+gNRrokhDL/8dtwc7S74jYPHz6Mg4MD/v7+AJK8FUKIi8iv0PHiMlPytmO4Ox8OSSLG24GZv+/i/2Yto7iiGoD7erbktTu74+5kf81j3Lp1KydPnqSkpIQuXa5+QUshrobBYDAnbz08PBo6HNGE2NmZnm/z8/Px9va+aDkFiyRwU1JSOHDggHn6958OHDhA8+bNLdGkuE4dPl3Eq/PW8tXq3RiMpvX2OieGEREVy08Hi9mww9RT8e2O04xsbVo5OsLTocHivVwGg4GMjAyOHTtGjx49zLWa0tLS5OVSCCHEdeN4cRUh7qYXfE9HG/b+X5fzjrpVFIWXfljNpO9XATCsYyKfj7sBG6srf2TNzc1l586dqFQqevXqJQuXCSHEeVTXGbD747oc4GLH24Pi0ahUjGwVxIHsAro8P4e1+08AkBjizYf3D6BdTHCDxRsfH8+ZM2dISEiQ5K1ocH/WvLW3v/adGaLp+/PPTV1d3bVJ4O7Zs8f87+PHj2fChAlkZmbSpk0bADZt2sQHH3zAlClT6qtJcR07mF3AK/PWMnttOsY/ErfdmkcQ1iyaeQeKWb3DVIcpysuB53pGcXuyf0OGe8VUKhVZWVlUVFRw7Ngxc6eHJG+FEEJcL2ZtPcl9c/YwfUgid6eZXvbPl7yt0xu4/8OfzdNyn7qpAy8P63bV90Rvb2+Cg4Oxs7OTFaOFEOIfFEXh+12neWTBPr4e1oLuUaYatve2CaFKV8szs1fw5oIN6A1G7G2seOn2rozvn4aV9t8tulOfdDodNjY2ADg7O9OnTx95bxKNinQmiCvxb//c1FsCNzk5GZVKhaIo5m2PP/74OfsNGzaM2267rb6aFdeZfSfyeXnuGr5fv5c//yj1bxnJ2AHtGDbnECv/SNzGeDvyXM9IbksOQKNuOhdJRVEoKCjAy8sLlUqFWq2mRYsW1NTUEBIS0tDhCSGEEPVGbzDyf7/sZ+qaYwAsyyhgdOug8z6kllXVcPMbP7Bs91HUahXT7+3P/b1T6yUOtVpNWloaIC9WQgjxd0cKKxkzL53fMkwLkU1de8ycwF20LYNxny4mK78EgMGtY3j37j4Ee7le8zgVReHgwYMcPHiQbt26mWdSSPJWCPFfUm8J3GPHjtXXqcR/0O5jubw8dw1zN+43bxvYKpoXbu1MywjT6Nq2W/I5fqaK53pGcUtz/yaVuAXTg8e6devIycmhXbt2BAYGAuDr69vAkQkhhBD1q7iqltu+3M7yw4UAvNAriud7Rp03gXqqqIz+r3zD7qw87G2s+OHRW+ifGnVV7f+5kEhMTAwgiVshhPi7Wr2RN1Zl8vKyw9Tojdho1TzdPZInukWQXVjKhM+XMn/TAQCCPJ15/55+DGod02DxKopCbm4udXV1nDp1SkrhCNGIrFq1iq5du3LmzBnzAuyNSWhoKA8//DAPP/zweb/PysoiLCyMnTt3kpycfE1ju1z1lsCV0YPiSuw4cprJc9bw05aD5m0D0+LwCQ5n4cEi/Dzdzdu/GtYCNzsr1E0scfsnlUqFm5sb+fn5VFVVNXQ4QgghhEXsyy1n0OdbOFpUhYO1hi+HtuCmpPOvqrv3eB59X/6G7KIyvF0cWPTMMFKbBVxV+5WVlaxfvx6DwYC9vT3BwQ1Xo1EIIRqb9ceKuXfObg7kVQDQPdKTGUMSCXO34/3FW3ju29+pqKlFo1YxcVBbnr+lM452Ng0as1qtpl27duTk5BAaGtqgsQhxvRk5ciSzZs0CQKvV4u7uTlJSEkOHDmXkyJGXHOn+59/N+uhYeeutt3jvvffIy8sjODiYRx99lPvuu++qz3sxQUFB5OTk4OnpadF26oNFFjEDOHLkCFOnTuXAAVPPXVxcHBMmTCAiIsJSTYomZMvhbCbPWcMv2zIAUKlgcJsEPAJD+S49n4ptOQDM3HqSp3tEAuDhYN1g8V6Jmpoa9u/fT2RkJE5OTgBER0cTHh4uxc2FEEJclwoqdLR7bx1lNXrC3O1ZMLoViX7nrzu7Mv0oN/3ve0qrdEQHeLDk2TsJ83G76hgcHByIi4ujsLCQgICrSwYLIcT15nRZDQfyKvB2tObtQfEMSwlga+Ypbp3yNbuO5QLQLjqIGff3Jym04WYKlpSUUFJSYk7Y2tjYSPJWCAvp06cPX3zxBQaDgby8PJYuXcqECROYO3cuCxcuRKs9f+qwrq4Oa2vreplVvGbNGh577DGmTZvGwIEDyc7OpqCg4KrPeykajabJzIq2SNGYX3/9lbi4OLZs2UJSUhJJSUls3ryZ+Ph4li1bZokmRROx4eAJ+rz0FWlPfMov2zJQq1Xc3CGJu28eyG/F9ny6LYcKnYFkf2fmj0zlyW7NGjrkK7Zjxw4yMzNJT083b7OyspLkrRBCiOuWl6MNj3WJoFszT7Y+3PGCyduvV++mz+SvKa3S0SE2mA2v3l0vyds/xcbG0r59+4uu5CuEEP8FiqJwtKjS/PnmJD+mDU7g4BNd6R/jwdiPF9HmyU/ZdSwXN0dbPnlwIGtfGdWgyduKigpWrlzJ1q1byc/Pb7A4hLgaiqJQWVPbIP/8fW2qf8PGxgZfX18CAgJISUnh6aefZsGCBSxZsoSZM2ea91OpVMyYMYNBgwbh4ODAK6+8wqpVq1CpVJSUlAAwc+ZMXF1d+emnn4iMjMTW1pbevXtz8uTJi8agVqvRaDTcfffdhIaG0qFDB2688cZ/9d950qRJBAcHY2Njg7+/P+PHjz9rn6qqKkaPHo2TkxPBwcF8/PHH5u+ysrJQqVTs2rULwPx7Fi1aRFJSEra2trRp04a9e/f+u/+YFmSREbhPPvkkjzzyCFOmTDln+xNPPEHPnj0t0axoxNbsy+KlOatZscdUK1mjVnFX5+Y8ekN7un66g8JTpwFoEeDMC72iGRTv0+Tq1RmNRhRFMb8sxsfHU11dTbNmTTcJLYQQQlxKhU5PWY0efxdbAJ7pHslT3Zqh1Zw7TkBRFF6dt5ZnZ68E4NZ28cwaPxhba6uriqGsrIzMzEySk5PNU/1kcRshxH/dwbxyHpyXzt7ccg4+0RUPB2tUKhXjOoTy7dp0Js78lbwSU3J3eJfmvDG8J96ujg0ctWkmRWBgIJWVlVLvVjRZVbo6HIe92iBtV8x+Ggfbq5vB3K1bN5o3b878+fO55557zNsnTZrElClTmDp1KlqtlqNHj55zbFVVFa+88gpffvkl1tbWjBkzhttvv53169dfsL3k5GQCAgIYM2YMn3/++b9+jps3bx7vvPMO3333HfHx8eTm5rJ79+6z9nnrrbeYPHkyTz/9NHPnzuXBBx+kc+fOREdHX/C8//d//8e7776Lr68vTz/9NAMHDiQjIwMrq6t7Zr0aFkngHjhwgB9++OGc7aNHj2bq1KmWaFI0Qoqi8PveY7z0w2pW7zsOgFajZminZCbd0oFwX1N927taBrL2WBHP94xiQFzTS9wC5OTksHPnTkJDQ4mLiwPAxcWF7t27N3BkQgghhOUcK6rihi+2oFWrWDeuPfbWWtRqFWrOvZfrDQbGfLyIT5btAOD/Brdjyp09rjrRajAYWLNmDVVVVWi1WpKSkq7qfEII0dTV1Bl4dcVh/rfyCLUGI3ZWaraeLKFPjDeHTxcx5uNFLN9jSrpEB3gw474BdE0Ma9CYjUYjYOp8U6lUtGzZEkBmUgjRgGJiYtizZ89Z24YNG8aoUaPMn8+XwK2rq+P9998nLS0NgFmzZhEbG8uWLVto3br1OfsbjUYGDx5M8+bNKSkpYdiwYebkL0BiYiIjRozgscceO+fYEydO4OvrS48ePbCysiI4OPicNvr168eYMWMAeOKJJ3jnnXf4/fffL5rAfeGFF8yDT2fNmkVgYCA//vgjt9566wWPsTSLJHC9vLzYtWsXkZGRZ23ftWsX3t7el32+Dz74gDfeeIPc3FyaN2/Oe++9d97/6X8qKSnhmWeeYf78+RQXFxMSEsLUqVPp16/fZbctLp+iKCzbfYSXfljN+oOmYfLWWg1DOyejdQ9g9u4cHqiG8D/2f7VfDDZadZNM3P6ptraWiooKsrKyiImJkVE/QgghrnsrDxdy65fbKKqqw8fJhqziauJ8nc67b0W1jlvfmsOSHZmoVPDePf0Y2/fCz3KXQ6PRkJKSwr59+y76IC6EEP8FyzMKeHBeOpmFppG1/WK9ef/GRPycrHjx+1W8Nn8tujoDttZanr25E4/d0A4bK4stjfOv6HQ6Nm7ciIuLCy1atAAkcSuaPnsbKypmP91gbdcHRVHOydOkpqZe8jitVkurVq3Mn2NiYnB1deXAgQPnzeUtXbqU9evXc+rUKRwcHBgwYAADBw5k/vz5aDQaMjMz6dix43nbuuWWW5g6dSrh4eH06dOHfv36MXDgwLPq9v69c1+lUuHr63vJ8ixt27Y1/7u7uzvR0dHmNb4aikWu1Pfeey/33XcfR48epV27dgCsX7+e//3vf0ycOPGyzvX9998zceJEPvzwQ9LS0pg6dSq9e/fm0KFD500G19bW0rNnT7y9vZk7dy4BAQEcP34cV1fX+vhp4iIURWHJjsO89MNqNh8+BYCNlYZhXVJQu/rxza4cao6ats/Zc5p2YaYRuLZWTe/mXFpaisFgwN3d9BuCg4Opra0lNDRUkrdCCCGua4qi8P66LB5ZuA+DUSE1yIUfR7Yi0NXuvPvnFJcz4NXZ7Diag521lm8n3swNrWPqNSZ/f3/8/PyadGewEEJcDaNRYcR3O/l6u+l9y9/ZlncHxzMkyY8Ve47S++NFHM4pBqB3cgQf3NefiD9mRDa0oqIi8vPzKS4uJioqCgcHh4YOSYirplKprrqMQUM7cOAAYWFnj863xN/PPXv2EBwcbM6v/PTTT/Tq1Yvu3bszePBgwsPDzaN5/ykoKIhDhw6xfPlyli1bxpgxY3jjjTdYvXq1udzBP8seqFQq86j/psQiCdznnnsOJycn3nrrLZ566inA9GA9adKkc4oJX8rbb7/Nvffeax6i/eGHH7Jo0SI+//xznnzyyXP2//zzzykuLmbDhg3m/0myWqVlKYrCwq2HmDxnNduP5ABgZ63ljm4tMTj5MHtXDjq96UGiXagbL/SKomeUV0OGfFVOnDjB5s2bcXFxoUePHuZpPv8ccS6EEEJcb3R6A2PmpfP5FtMMmztbBvDxLc2xu0Bn7IHsAvpO/prjBaV4Odvz89PDSIsKvPo4dDp2795N8+bNsbGxAZDkrRDiP02tVmFnpUGtgrHtw3i5bzTVNTrunDqf2WtNiyr7uTkydXQfbmkX36iumf7+/qSkpODp6SnJWyEaiZUrV5Kens4jjzxy2cfq9Xq2bdtmHm176NAhSkpKiI2NPe/+AQEBHDt2jOzsbAIDA3FwcGDx4sV07dqVp556ivnz51+0PTs7OwYOHMjAgQMZO3YsMTExpKenk5KSctmx/2nTpk0EBwcDcObMGTIyMi4Y/7VS7wlcvV7P7NmzGTZsGI888gjl5eUAODmdf0rdxdTW1rJ9+3ZzEhhMNXF69OjBxo0bz3vMwoULadu2LWPHjmXBggV4eXkxbNgwnnjiiQtOw9DpdOh0OvPnsrKyy471v8hoNPLj5oNMnrOa3Vl5ADjYWjGmTysmDmxLl4+2cuiQKXHbIcydF3pF0T3Ss1E9LFwJHx8ftFotjo6O6PV6c10WIcR/j9w/xH/N+B/38vmWk6hV8PqAOCZ2Dr/gfX3NvixumPIdJZU1RPq5s+S5O+tttNfmzZvJzc2lpqaGTp061cs5hbhW5N4h6kt6ThlONlpC3e0BmNI/lvvahJAS4MzHy7bz5FfLKa3SoVLBuL6tmTy0Gy4Otg0ctcnx48fx9/c3D7qShZ+FaDg6nY7c3FwMBgN5eXksXbqU1157jQEDBjB8+PDLPp+VlRUPPfQQ06ZNQ6vVMm7cONq0aXPBUqhDhgzhxRdfpH///rz11luEhoaybds2iouLcXBw4IsvvuCGG24472znmTNnYjAYSEtLw97enq+//ho7OztCQkIuO+6/e+mll/Dw8MDHx4dnnnkGT09PBg8efFXnvFr1nsDVarU88MAD5toQV5K4/VNhYSEGgwEfH5+ztvv4+HDw4MHzHnP06FFWrlzJHXfcweLFi8nMzGTMmDHU1dXxwgsvnPeY1157jRdffPGK4/yvMRiMzN24n8lzVrPvZAEATnbWDO/RimcGt8HPzfT/fGLnCL7Zkc0LvaLp2syjSSZuDQYDmZmZVFVVmesx2djY0LdvX2xtG8fDjxCi4cj9Q/zXPNMjktVHinh3cAK9Yy68rsF369IZMe0navUG2kYHsvCpoXg619+oqubNm1NdXU3z5s3r7ZxCXCty7xBXq1Kn56VlGby9+ig9ojxZfE8aKpUKd3trTuQV0e6pOeaSdi0j/Pjw/gGkNgto4Kj/sm/fPvbt24efnx/t27eXEnRCNLClS5fi5+eHVqvFzc2N5s2bM23aNEaMGHFFfz/t7e154oknGDZsGKdOnaJjx4589tlnF91/w4YNPP3004waNYqCggLi4+OZPHkyqamppKWl8fDDDzNt2rRzjnV1dWXKlClMnDgRg8FAYmIiP//8Mx4eHpcd999NmTKFCRMmcPjwYZKTk/n5558bfPCeSlEUpb5P2qVLFx5++OGrzk6fPn2agIAANmzYcFYB4ccff5zVq1ezefPmc46JioqipqaGY8eOmUfcvv3227zxxhvk5OSct53z9YIHBQVRWlqKs7PzVf2G683OozncMXUeB7ILAXCxt2FEz9aUaF35dncOH92cxKjWpmHmRqOCStW0pzQWFxezfPlyAHr37o2Li0sDRySE+FNZWRkuLi4Neq2W+4f4L9ibU0aC319/ng1GBY36/Pd2RVF446f1PPGV6d55U5tYvp5wE3b1tJjGP9tqys8YouE09P1D7h3iaiw+kMeYeekcP1MNwE2Jvnw1rAUGg4EXvvuddxdtxmhUcLKz5tU7uvNg71ZoNI0rQVpcXMzvv/9ObGwssbGxci0XTcaF7h9/5qDCwsL+8wO9Zs6cycMPP0xJSUlDh3JFVq1aRdeuXTlz5sw1W0vr3/75sUgN3DFjxvDoo4+SnZ1Ny5Ytz6lj8/cV4C7G09MTjUZDXl7eWdvz8vLw9fU97zF+fn5YWVmdVS4hNjaW3Nxcamtrz5sxt7GxMddPExe26dBJ+kz+mtIqHW6OtozokUaRxpnpu3LQG6sAWHes2JzAVV/g5a6xq6qqwt7eNA3J3d2dyMhIXFxcrmo0uRDi+iT3D3E90+kNPPHLAaatO8b8EakMTvQDuGDyVm8wMP7TJcz4dRsADw9ow5sjetVL4sBoNLJjxw6ioqLML0zywi+aKrl3iCtxurSGCT/tZe4e06CkYDc7Prgpkf6x3vy0+SDjP1tCdpGpHMet7eJ5Z3Rv/N0bT4fA3zvd3N3d6devH3Z251/8UgghxLksksC9/fbbAc5asEylUpkv2gaD4V+dx9rampYtW7JixQrzaF6j0ciKFSsYN27ceY9p3749s2fPxmg0mod6Z2Rk4Ofn1+DDnZuyNfuy6P/KbCpqamkZHUpMfALv7c7FYKwAoEekJy/0iqJD+NUNU29INTU1bN68mZKSEvr162eux/Rn6QQhhBDivyKjoIKhX+9gR3YpAHtzy80J3POprKll6Ntz+XlbBioVvD2yNw8PbHvB/S/X3r17OXr0KLm5ufTt2/eC6xoIIcT1aPPxM/T8aBPlOj0atYpHOoUzqVcUBaXlDHrtW37ZlgFAuI8bH9zbjz4pjWtx5YKCAnbs2EGHDh3Mg7skeSuEEJfHIgncY8eO1du5Jk6cyIgRI0hNTaV169ZMnTqVyspKRo0aBcDw4cMJCAjgtddeA+DBBx/k/fffZ8KECTz00EMcPnyYV1999axksrg8y3cfYdBr31Jdq6dLYhjHrQP4Zqep57dXlBcv9IqiXVj9LErSkKytramqqqKuro7CwkL8/C78oiqEEEJcr77cdpIx89KprDXgYW/FF7cnMzD+/DOfAPJKKhj46my2Zp7G1lrL1xNuYkjbuHqNKTo6moKCAuLi4iR5K4T4z2nu74yfsw3x9k58eHMicd6OvL1wIy/+sIrqWj1WWjVPDO7A00M6WqRkzdVQFIXdu3dTWlrK3r17SUtLa+iQhBAWNHLkSEaOHNnQYVyxLl26YIFKs/XCIgncq13t7e9uu+02CgoKeP7558nNzSU5OZmlS5eaFzY7ceLEWUWVg4KC+PXXX3nkkUdISkoiICCACRMm8MQTT9RbTP8li7ZlMOSN79HVGeiXEsm8x2/lVFktzyw5yMOdwmkT4tbQIV6xkpISsrKyaN68OSqVCrVaTevWrbGxscHR0bGhwxNCCCGuqfIaPWPm7+Hr7aaFb7pEePD1HS0IcLnwKKlDpwrp+/LXHMsrwcPJjoVPDaVdTHC9x2ZjY0O3bt2kbIIQ4j+hvEbP9A1ZPNo5HK1Gja2VhhUPtMXf2ZYNh07Q4n9fmxeT7pIQyvT7+hMb6NXAUZ+fSqWibdu2HDhwgOTk5IYORwghmiyLJHABDh06xHvvvceBAwcAUx3ahx56iOjo6Ms+17hx4y5YMmHVqlXnbGvbti2bNm267HbE2eZv2s/tb8+lTm+kV2osP/7fEKyttER4WvHdXS0bOryrUldXx8qVK9Hr9Xh5eREQYFqV9WpXKhRCCCGaqt8zC/l6+yk0ahWTekXxVPfIC9a7BVh/4ASDXvuW4opqwn3cWPLcHUT5e9ZLLIqisHfvXjw9Pc0zYiR5K4S43imKwo/puYz/aS+nSmuw1qh4pHMEAHYahftmLOSzFTsB8HS2560RvbirS/NGd32sqamhrKwMb29vABwcHEhNTW3gqIQQommzSAJ33rx53H777aSmptK2ran+2aZNm0hISOC7775jyJAhlmhW1KPZa/YwfNqPGIwKLZKbs6rEml8zCi86hbKxq6mpMa/oZ2VlRWRkJBUVFbLarxBCCAEMSvDluZ6R9I72pv0lSiPN3bCPO9+dj67OQOvIAH5+aijervU3e+XkyZMcOHAAtVpN3759z1kQVwghrjfHi6sY9+NeftlvWsA7wsOeRD9nFEVh1u+7eGzWbxSVVwNwb88UptzZA3cn+4YM+bwqKyv57bffMBqNdOnSRQbICCFEPbFIAvfxxx/nqaee4qWXXjpr+wsvvMDjjz8uCdxG7osVO7l7+gIUBVqltGDrGTVgZMuJkiaZwDUajWzdupWTJ0/Su3dvnJycAEhISGh0vdVCCCHEtZJfruPRn/fxxoA4fJ1NHZwv9Ym56DGKovDOzxt5bNZvKArc0Dqa2Y8Mwd6mfheKDQgIIDAwEA8PD0neCiGua3UGI1PXHGXSbxlU1Rqw0qh4omsznu4RybHcIro8N5M1+48DkBjizYf3D7BIqZr6Ym9vj6enJzU1NWeVOhRCCHF1LJLAzcnJYfjw4edsv/POO3njjTcs0aSoJ9OXbGHsJ4sBaNOqJZsKTduf7RHJS30uv/xFY6BWq6mtrcVoNHL69GlzGQ9J3gohhPivWp5RwF2zd5JbrqO0Ws/Cu1tf8hiDwcjEmb8ybdFmAMb2bcW7o/ui0dT/C7pGo6Ft27ZyrxZCXPfGzEvn080nAOgU7s6HNycR4mrD5O9/540FG9AbjNjbWDHpti48PKANVtrGtZBjXV0dmZmZREVFodFoUKlUtG7dGisrK0ngCiFEPbJIArdLly6sXbuWZs2anbV93bp1dOzY0RJNinrw9sINPDrzNwDapbViQ74RgBd6RfFCr6gm8xJVWVlJRkYGiYmJaLWmP+LNmzcnPj4ed/eLTwkVQgghrmd1BiPPLz3E/37PRFEgzseRV/tdfNQtQJWuljunzufHzQcBeGN4Tx69oV29PhscP34cnU5HVFQUIB2tQoj/hoc7hfPL/jxe6xfLiFaBLN2ZSf9JiziWVwLAoFbRTLu7LyHerg0a5/koisLq1aspLi7GaDQSHx8PmBaeFEIIUb8sksAdNGgQTzzxBNu3b6dNmzaAqQbunDlzePHFF1m4cOFZ+4qG98rcNTw7eyUAndq1YU1OHQAv9o7m+V5RDRnaZVEUhbVr11JWVoatrS2xsbEAUudWCCHEf96xoiqGfbODTcfPAHB/2xDeHhSHvfXFHwcLSisZ9Nq3bMrIxlqr4cvxN3Jbh4R6ja2kpIQtW7agKApOTk7mhcuEEOJ6cqaqlldXZGIwKrx9gynZGe/rRNaz3SksreTWN+cwd+N+AII8nXnvnn7c0PrSnWwNRaVSERUVRXp6ugyUEUJcUJcuXUhOTmbq1KnXtN2RI0dSUlLCTz/9dMF9QkNDefjhh3n44YevWVxXyiIJ3DFjxgAwffp0pk+fft7vwHTBNxgMlghB/EuKovD8t7/z8tw1ALx0exeOGV1Zk3OSV/rG8HSPyAaO8NJqamqwsbFBpVKhUqmIiYkhKysLLy+vhg5NCCGEaBQ2HT9D7483UVajx9XOik9uSeLm5v6XPO7w6SL6vfINmTnFuDnasuDJoXSMC6n3+FxcXIiLi6OyshJf36ZXb18IIS6mVm9k+oYsJi/LoLiqDo1axfiOYYS626M3GPhw6Vaenb2SippaNGoVjwxsywu3dsbRrnGNZDUajRw+fBh3d3fzu1ZQUBD+/v7mmY9CiKZl5MiRzJo1i/vvv58PP/zwrO/Gjh3L9OnTGTFiBDNnzrzkuVatWkXXrl05c+YMrq6ulgm4nm3durXJrLdgkaus0Wi0xGlFPVMUhf+b9RtvLdwImKZDPja4PQajwk1JfgyI82ngCC9t7969HDp0iHbt2plH64SEhBAaGtqwgQkhhBCNSIKvE35ONiT4OjH7jhRC3C+9cvm3a9O5/8OfKa+uJdTblcXP3kFsoGU6R1UqFfHx8SiKIqUThBDXDUVRmLM7h6cWH+BoURVguh6/PiCWEDc7th4+xQMf/cKOozkAtI0O5MP7B5AU2jg7sg4cOMC+fftwdnamZ8+e5pq3krwVomkLCgriu+++45133sHOzg4wDZSbPXs2wcGNc9HE2tparK2vfhHdpjTwT6qK/0cZjUbGfbLYnLwdNbArDw9sC4BGrWoSyVsAg8GAwWDg1KlT5m3y4ieEEELA4YIKjEYFAEcbLcvub8vqMe0umbytqNYx+v2fGPbOPMqra2kfE8TG1+6u9+RtYWEh27dvP6vjX+7hQojrxaH8CtpOW8dtX23naFEVfs42fHprc3Y92pkEL1tGTPuRtCc/YcfRHFwdbPnogQGse2V0o03eAjRr1gxnZ2eioqJkgTIh/qVKnf6C/9TUGf71vtX/ct8rkZKSQlBQEPPnzzdvmz9/PsHBwbRo0cK8TafTMX78eLy9vbG1taVDhw5s3boVgKysLLp27QqAm5sbKpWKkSNHmo81Go08/vjjuLu74+vry6RJk86KoaSkhHvuuQcvLy+cnZ3p1q0bu3fvNn8/adIkkpOT+fTTTwkLC8PW1haAuXPnkpiYiJ2dHR4eHvTo0YPKysqzzv3mm2/i5+eHh4cHY8eOpa6uzvxdaGjoWaUdVCoVM2bMoG/fvtjZ2REeHs7cuXOv6L9rfZOusv8gg8HIfR/+zOcrdoIK+nbtzBd7y9B9u4uv72jRaF+eamtrOXToEGFhYTg6OgIQHR2Nt7e3TLcUQggh/qAoCh+sz+Kxn/fzar8YJnaOACDIze6Sx+48msPQd+Zy6FQRarWKZ2/uxHO3dEKrqd9Vz+vq6li3bh21tbXY29uba9YLIcT1wsPeigP5FThYa3i8azMe7RyOXq/n2dkrmPrLJmpqTYmWuzon8eaIXni7OjZwxGdTFIUTJ05QWlpKUlISYFqcrHfv3o32fVGIxsjx6SUX/K5frDeL7kkzf/ae9BtVtecvM9o5woNVY9qZP4e+soLCytpz9lPeGnhFcY4ePZovvviCO+64A4DPP/+cUaNGsWrVKvM+jz/+OPPmzWPWrFmEhITw+uuv07t3bzIzMwkKCmLevHkMGTKEQ4cO4ezsbB7NCzBr1iwmTpzI5s2b2bhxIyNHjqR9+/b07NkTgFtuuQU7OzuWLFmCi4sLH330Ed27dycjI8NcYzszM5N58+Yxf/58NBoNOTk5DB06lNdff50bb7yR8vJy1q5di6Io5nZ///13/Pz8+P3338nMzOS2224jOTmZe++994L/LZ577jmmTJnCu+++y1dffcXtt99Oenp6gz+vSgL3P0ZvMDBi2k/MXpuOSq2ib7fOLD5SDkCbELdGfTPeunUrp06dorq6mtatWwNga2srC50IIYQQfyiqrOXu73exYF8eAOuOFfNIp/BL3t8VRWHaos08/uUyavUGAtyd+OaRIXSOD7VInFZWVqSmppKZmUlkZOOvty+EEJdSUKHj252neKhDGCqVCk9HG364qyXN/Z3xsLfi42XbmfT9KgrLTKUUOseH8OaIXqQ2C2jgyM+vpKSEzZs3AxAQEICHhwcgMyWEuF7deeedPPXUUxw/fhyA9evX891335kTuJWVlcyYMYOZM2fSt29fAD755BOWLVvGZ599xv/93/+ZE63e3t7n1MBNSkrihRdeACAyMpL333+fFStW0LNnT9atW8eWLVvIz8/HxsZU+/vNN9/kp59+Yu7cudx3332AaVDfl19+aS57sGPHDvR6PTfddBMhIaY1GhITE89q183Njffffx+NRkNMTAz9+/dnxYoVF03g3nLLLdxzzz0ATJ48mWXLlvHee++ds8bXtSYJ3P+Q2jo9w96Zx7xNB9Bo1PTp1oVFmaUAfHBTImPahzZsgP9QV1eHWq1G88eon5iYGCoqKvD3v/SiK0IIIcR/zZojRdzxzQ6yS2uw1qh5fUAs4zuGXfJlu6C0klHv/8Si7YcBGNQqms/H3YCH06Xr5F6NwMBAAgICJBkghGjSqusMTF1zlNdWZFKu0xPp6UDfWFM5ul7RXizYcpAnvlpOxukiAGICPHl9eE8GpEY16uufm5sbERER2NnZNZnFiIRojCpe7XvB7zTqs68B+ZN6XXBf9T/2zXqm+9UF9g9eXl7079+fmTNnoigK/fv3x9PT0/z9kSNHqKuro3379uZtVlZWtG7dmgMHDlzy/H+O5P+Tn58f+fn5AOzevZuKigpzR9GfqqurOXLkiPlzSEjIWTVrmzdvTvfu3UlMTKR379706tWLm2++GTc3N/M+8fHx5pzSn+2mp6dfNNa2bdue83nXrl2X/I2WJgnc/4ia2jpueXMOv2zLwEqroU/3LvycUQLAhzcncn/b0AaN75+OHj1Keno6MTExREdHA+Dh4UGvXr0a9YOOEEIIca3pDUZeXn6YycsyMCoQ6enA93e1pEWgyyWP/T39GHdMnUfOmQpsrDS8NbI3Y/q0ssi9trKykj179tCyZUvzohNyTxdCNFVGo8JX27N5dslBsktrAEgJdMHVzgqAzRnZPDbrN9YdOAGAt4sDL97ehXt6pNR7WZr6kJ+fz759+2jfvr35Gt2yZcsGjkqIps/B5t+n3Sy17781evRoxo0bB8AHH3xQr+e2srI667NKpTKvg1BRUYGfn99Z5Rr+9PcOJAcHh7O+02g0LFu2jA0bNvDbb7/x3nvv8cwzz7B582bCwsIu2W5TY7HK40eOHOHZZ59l6NCh5qz6kiVL2Ldvn6WaFBdQpatl0Gvf8su2DGyttQzs1c2cvP34lqRGl7z9k06n49SpU2fVL5EXPSGEEOJsB/MreHXFYYwKjEgNZMfETpdM3uoNBp6dvYLuk2aRc6aCmABPNk+5l7F9W1vkXqsoChs3buTkyZNs37693s8vhBDX0vKMAlq+s4aR3+0iu7SGYDc7vh7Wgq0TOuJrp+L2t+bQ5slPWXfgBHbWWp69uROZ08fzQO9WjTJ5azQa2b59OwUFBf9qJJ0Q4vrUp08famtrqauro3fv3md9FxERgbW1NevXrzdvq6urY+vWrcTFxQGYO38MhvPX8b2QlJQUcnNz0Wq1NGvW7Kx//j4K+HxUKhXt27fnxRdfZOfOnVhbW/Pjjz9eVvv/tGnTpnM+N3T9W7DQCNzVq1fTt29f2rdvz5o1a3jllVfw9vZm9+7dfPbZZ41mBbf/gvJqHQNemc2a/cdxsLXil6eHUWvlwJLMrbx/YyKj04IbOkQMBgNHjx7F1dXVPBw+NDQUrVZLYGCgJG2FEEKIi0jwc+adQfG42llxR8vAS+6flX+GYe/MY+OhbADu6ZHC1NF9cLC1tliMKpWK1NRUtm3bRvPmzS3WjhBCWJreYGTs/HQyCipxsdXyTI9IHuoQRrWulse//I33Fm+hVm9ApYIRXZKZPLQrgZ6XnhFxrf05SEalUqFWq2nZsiUnT55sFEkKIUTD0Gg05k4czT86mxwcHHjwwQfNtW6Dg4N5/fXXqaqq4u677wZMJQ5UKhW//PIL/fr1w87OzrwA/cX06NGDtm3bMnjwYF5//XWioqI4ffo0ixYt4sYbbyQ1NfW8x23evJkVK1bQq1cvvL292bx5MwUFBVd9HZszZw6pqal06NCBb775hi1btvDZZ59d1Tnrg0USuE8++SQvv/wyEydOxMnJyby9W7duvP/++5ZoUpxHSWU1fSd/w6aMbJztbVjy7B20izElbI883R0/Z9sGjtBk//79HDhwAA8PD7p162Z+iAgObvjkshBCCNHYVNcZeHLRAUa1CiI5wJQUGNsh7F8dO2fDPu6dvpDSKh3O9jZ8/MBAbuuQYMlwzVxdXenevbt0zAohmpzTpTV4OlhjrVWj1ah5Y0AcKzILea5HJE42GqYv3cLkOas5U2EqpdAjKZw3R/SieZhvA0d+fiUlJWzfvp2oqCiCgoIA06JD3t7eDRyZEKKhOTs7X/C7KVOmYDQaueuuuygvLyc1NZVff/3VXHM2ICCAF198kSeffJJRo0YxfPhwZs6ceck2VSoVixcv5plnnmHUqFEUFBTg6+tLp06d8PHxuWisa9asYerUqZSVlRESEsJbb71lXmTtSr344ot89913jBkzBj8/P7799lvzKOOGpFL+Pj+9njg6OpKenk5YWBhOTk7s3r2b8PBwsrKyiImJoaampr6brFdlZWW4uLhQWlp60T+8jVlReRW9XvyKHUdzcHW0ZWDPrjzbJ54or0v3flia0WhEr9ebh9dXV1fz+++/ExUVRXh4OGq1xSp7CCGuI43xWt0YYxLXl/255dz+9XbSc8qJ8XYk/bHOaDWXvm9W6Wp5+POlfLJsBwBtogKZ/cgQwnzcLnHklaurq2Pbtm0kJCSc1aEvRENrbNfqxhaP+Et5jZ43VmXy1uqjvNo3hgmdws3fKYrCnA37eOrrFRzNOwNAQrA3bwzvSe8WzRp1Z9XevXvZv38/Tk5O9OnTp1HHKkRjcqHrdU1NDceOHSMsLAxb28YxUE5cGZVKxY8//sjgwYOvWZv/9s+PRUbgurq6kpOTYy4a/KedO3cSEBBgiSbF3+SVVNDzxS9JP56Pp7M97dp34Ktd+aw+Xs7BJ7piZ9VwdZdyc3PZvn07Pj4+5mHwdnZ29O3bVx4chBBCiAtQFIXPNp9g/E97qa4z4u1ozTs3xP+r5G368Txue2sOB7ILUangyRs78OLtXbHSWvZ5YPfu3Zw8eZLS0lJ69eolHbRCiCZDbzDy2ZYTvPBrBnnlOgBWHC40J3DXHzjBY7N+Y1OGqRSNn5sjk4d2Y2TXZDT/4rrcEAwGg3lKdExMDLW1tcTExMg7mBBCNBEWSeDefvvtPPHEE8yZM8e8wtv69et57LHHGD58uCWaFH84VVRGj0lfcvBUIb5ujrRq056FBwvRqFW8MSCuQZO3YKqjUllZSU5ODnq9Hq3W9EdQHhyEEEKI8yupruP+OXv4YfdpAHpGefLl0Bb4XqIUkqIozFi6lYkzf0VXZ8DPzZGvJtxE96Twix5XXxISEigrK6N58+aSvBVCNAmKorDoQD6P/7KfA3kVADTzdGBK/xhuSvTj8Okinvx6OfM3mWpEOtha8fjg9jw6qJ1F64hfjaqqKnbu3ImiKHTo0AEArVZLSkpKA0cmhBDiclgkgfvqq68yduxYgoKCMBgMxMXFYTAYGDZsGM8++6wlmhTA8fwSur0wi6N5Zwj0dCa5VVt+PliIVq3i2ztTuLm5/zWNR1EUsrOzURTFXM/Wy8uLNm3a4O/vb07eCiGEEOL8Tp6pptP09WQVV6NVq3ilbwyPdYlArb54x2dxeRX3TF/Ij5sPAtAvJZKZDw3Gy8XhWoQNgK2tLV27dpVOWiFEk/H04oNMWZkJgIe9Fc/3iuKBtqGUVVUz4bMlzPh1G3qDEbVaxT3dU5h0Wxf83Bt3iZi6ujpOnzZ1AJaVlUmZDiGEuAgLVJmtNxbJoFlbW/PJJ5/w3HPPsXfvXioqKmjRogWRkZGWaE4AmTlFdH/hS04UlhLm40ZcSmt++SN5+8PwltyY6HfNYzpx4gSbN2/G1tb2rIStLE4mhBBC/DsBLrZEeDigwtQZmxZy6Zq1a/ZlccfU+WQXlWGlVfP6XT2ZMKCNxROpiqKwY8cOAgMDzQtOSPJWCNGUDG0RwLR1x3iofRhPdm+GrQbeWbiBV+evpazKVEqhX0okrw/vSXxw413wS6fTYWNjA4CLiwstW7bE3d1dkrdCCNGEWSSBu27dOjp06EBwcLAk666Bg9kFdHthFjlnKogO8KBP1068u/4EVhoVc4anckPCtVn9VFEUamtrzQ8LgYGBHDx4kMDAwGvSvhBCCHE9yCmrwcVWi721FrVaxew7UrDRqnGxs7rocXqDgZfnrGHy3DUYjQqRfu58N/FmUiKuzQycI0eOcOTIEY4fP06/fv1kEQ8hRKNWUl3Hq8sPY1AU3hoUD0CSvzPZz/XAxVbLt2v38vQ3KzhRWApAcpgvb47odc3K0FwJg8HA7t27OX78OL1798be3h6A8PDGG7MQQoh/xyIJ3G7duhEQEMDQoUO58847iYuLs0QzAtiTlUuPSV9SUFZFQrA3yycNx9rami3Z5TzVvRkD469N8rakpIStW7ei1Wrp0qULKpUKjUZDr169ZPSNEEII8S8tOZDHiO92cVOiHx/enASAt5PNJY87WVjKHVPnsXb/CQBGdG3Oe/f0w8nu0sfWl7CwMPLy8ggKCpLkrRCi0arVG5mxIYuXlmVQXFWHRq1ifIcwQtxNyc5dR07x2Kzf2HE0B4BAD2deGdaNOzsnNfp63mq1mjNnzlBXV8epU6dkBqwQQlxHLJLAPX36NN999x3ffvstU6ZMISkpiTvuuIOhQ4fKaMx6tP3IaXq9+BXFFdUkh/my7IW78HQ21bZbN679Jevj1Sdra2tKS0tRqVRUVlbi6OgIyNRJIYQQ4t/Q6Q08tegg76w5CsCm42eo1OlxsLn0o9pPmw8w+oMFnKmowdHWmg/vH8AdnZMsHfI5NBoN7dq1k3u/EKJRUhSFuXtyeGrRAY4UVQEQ5+PIGwPjCHaz40B2AY9/uYxftmUA4GRnzVM3deThAW2ws7n4DIiGVFlZiZ2dHWq1GpVKRWpqKjU1NeZSNkIIIa4PFkngenp6Mm7cOMaNG8exY8eYPXs2s2bN4qmnnqJTp06sXLnSEs3+p2w8dJI+k7+mrEpHq2YBeDRL4JtdeUzoZJoeY+nkbX5+PqWlpeZeXXt7e9q2bYuHh4eMuhFCCCEuw+GCCm7/egc7sk3TdB/qEMbrA2KxtdJc9LhqXR2PzfqN6Uu3ApAa4c+3E4fQzM/D4jH/6eDBg2g0GvPzgCRvhRCNUUZBBSO/3cXG42cA8HGyYXKfaEa1CqKovIoHP/qFT5fvwGBU0KhVPNA7ledv6Yy3q2MDR35xGRkZpKenk5SUZL4Ou7i44OLi0sCRCSGEqG8WSeD+XVhYGE8++STNmzfnueeeY/Xq1ZZu8rq3el8W/V/5hsqaOtrHBuMQHMvSQ4WsPlrMkCQ/Al3tLNp+cXExq1atQq1W4+/vj4ODadRvQECARdsVQgghrjdfbTvJmPnpVOgMeNhb8cXtyf+q/NH+k/nc/vZc0o/nA/B/g9vx8tBuWFtZ/NHOrKCggD179gDg7u6Oh8e1SxwLIcTlcLezYl9eOfbWGv6vSwSPdYlApRh5bd5aXv9pPRU1tQAMbh3DlLt6EB3g2cAR/ztqtRqDwUBBQYGUSxBCiOucRZ/y169fzzfffMPcuXOpqanhhhtu4LXXXrNkk9e933ZlMnjKd1TX6umaGI7WL5LfMgqxs1Lz8+jWFk/eguklzdfXF0dHRzSai48OEkIIIcT5FVfV8vCCfVToDHSO8OCbO1oQ4HLx+7iiKHyybDsPf76U6lo93i4OfDn+Rnq3aHaNov6Lp6cnsbGxAJK8FUI0KoUVOr7bdZqx7UNRqVR4Otrw/V0tae7vjLeDNV+u2s2z367kdHE5AK2a+fPmiF50ig9t2MAvoaamBr1eby5XFx4ejr29PX5+fg0cmRBCCEuzSBX2p556irCwMLp168aJEyd49913yc3N5auvvqJPnz6WaPI/4eethxj46rdU1+rpkxKJ2rcZyw4XYm+tYfE9aXSP8rJY2waDAUVRzJ87duxISkqKlEsQQgghrpC7vTVf3JbMS32iWfFA20smb0sqq7ntrTnc/+EvVNfq6dk8nN1vP9AgyVswlUtITEwkISGhQdoXQoh/qq4z8L+VmUS8tpKHftzLr4cKzN/1ifEm/Wg2KY99xOgPFnC6uJxQb1e+nTiETVPuafTJ27y8PJYuXcrmzZvN72V/zoiU8jVCiCs1cuRIVCoVU6ZMOWv7Tz/9dNXXlkmTJpGcnHxV57gcM2fOxNXV9Zq1dylZWVmoVCp27dpVL+ezyAjcNWvW8H//93/ceuuteHo2jeknjd3cDfsY+s489AYjg9JiKXMKYlVmEQ5/JG87RVhu5IvRaGTDhg3Y2dmRkpJiLpAvhBBCiH/PaFR4d+1RIjwcGJRgKpMwKMHX/O8Xs+HgCYa9M4/jBaVoNWpevaM7jw5qe81XRD99+jQ5OTm0aNHC3LY8EwghGprRqPDNjmyeWXKQkyU1ACT7O+P8x0KQe7JyefzLZfy66wgArg62PHtzJ8b1a43NNSw9czWcnJwwGo3o9Xpqamqws7P8zEshxH+Dra0t//vf/7j//vtxc3O75u3X1dVhZdV4F4tsLCzy1L9+/XrGjBkjydt68s3qPdz29lz0BiNDOyZwc/e2rDpShKONhqX3WjZ5C1BYWEhubi7Hjx+nvLzcom0JIYQQ16P8ch0DPtvCxIX7GfX9LgoqdP/qOIPByCtz19Dp2S84XlBKuI8b618dzf8Nbn/Nk7c1NTVs3LiRI0eOcOzYsWvathBCXMjKw4WkTl3D8G93cbKkhiBXW74cmsz2RzoR4qzl7g8WkPzoh/y66whWWjUPD2hD5vTxPHpDu0advNXr9eTm5po/29vb07VrV3r27CnJWyGaEL1ej16vP2tGs8FgQK/XYzAYLrnvnx03/3bfK9GjRw98fX0vWfJ03rx5xMfHY2NjQ2hoKG+99dYF9505cyYvvvgiu3fvRqVSoVKpmDlzJmDq/J8xYwaDBg3CwcGBV155BYAFCxaYZ3qHh4fz4osvotfrzed8++23SUxMxMHBgaCgIMaMGUNFRQUAq1atYtSoUZSWlprbmzRpEgChoaG8/PLLDB8+HEdHR0JCQli4cCEFBQXccMMNODo6kpSUxLZt2876DevWraNjx47Y2dkRFBTE+PHjqaysNH8fGhrKq6++yujRo3FyciI4OJiPP/7Y/H1YWBgALVq0QKVS0aVLl4v/j7iEertjLVy4kL59+2JlZcXChQsvuu+gQYPqq9nr3mfLd3DvjIUoCozqlswnDw5Co1GTV15Hu1A32oW5WzwGb29v2rY1jfKRFU2FEEKIy7Mio4A7Z+8kt1yHrVbNK31j8HSwvuRxp4rKuOvd+fy+NwuAoR0T+PD+ATjbN0z5IltbW1q1asWpU6fMD6RCCNGQ9AYjD8zdw+HCSpxttTzVrRkTOoWj1+uZ9P3vvLlgA9W1ppf/W9rF8dqdPYjwtfz709XS6XQsX76cqqoqevXqZX4Ha4iRcUKIqzN//nzAlAf7swTloUOH2Lt3L2FhYbRq1cq874IFCzAYDPTv39+8WHxmZia7du0iODiYNm3amPddtGgROp2O3r17m68Rx44dIyIi4rJj1Gg0vPrqqwwbNozx48cTGBh4zj7bt2/n1ltvZdKkSdx2221s2LCBMWPG4OHhwciRI8/Z/7bbbmPv3r0sXbqU5cuXA5yVT5o0aRJTpkxh6tSpaLVa1q5dy/Dhw5k2bRodO3bkyJEj3HfffQC88MILgKlszLRp0wgLC+Po0aOMGTOGxx9/nOnTp9OuXTumTp3K888/z6FDhwDM9cIB3nnnHV599VWee+453nnnHe666y7atWvH6NGjeeONN3jiiScYPnw4+/btQ6VSceTIEfr06cPLL7/M559/TkFBAePGjWPcuHF88cUX5vO+9dZbTJ48maeffpq5c+fy4IMP0rlzZ6Kjo9myZQutW7dm+fLlxMfHY2196ef/i6m3BO7gwYPJzc3F29ubwYMHX3A/lUp1Ts+BOL8Plmxh3CeLAbi7Z0veHNELjcY02uaxrpf/l/JyKYpinhZ5vr/AQgghhLiwOoORF349xJSVmSgKxPk48v1dLUnwc77ksb9sO8TI936iqLwaB1srPri3P8O7NG/wcgXBwcEEBQU1eBxCiP+unLIaPOytsdaq0WrUvDEwjuUZBTzfKwo3Oy2fLd/JC9//Tl6JaZRUu+gg3hzZi7bRQQ0c+b9nY2ODi4sLiqKg0/27GRtCCHE1brzxRpKTk3nhhRf47LPPzvn+7bffpnv37jz33HMAREVF/X979x0eVZn2cfw7M+m9kgYkEDqEUEIXEUGCooKCsjZYdF1FsaG7iKsgNsCCWFCsq64iuirqKiqI9CK9RKrUUJJQ0ntmzvtHXmZlAU0gkzMJv8915Vrm5Mxz7oPs3HPu85z7YevWrTz33HNnLOD6+voSEBCAh4cH0dGntwu78cYbGTVqlPP1rbfeysMPP8zIkSOBykUan3zySf7+9787C7j333+/c/+Ts2rvvPNOXnvtNby8vAgODsZisZzxeFdccQV33HEHABMmTOD111+nS5cuXHfddQCMGzeOHj16kJmZ6ZyNfNNNNzmP2bx5c15++WX69OnD66+/7izGX3HFFdx1113OMV588UUWLlxIy5YtiYysXKcqPDz8jDFVV40VcH87Vftcp23Lf73w1Qoeen8eAHdd0Y2NxYFc+c4avru9O4E+rn/UJz09nd27d9OzZ8/zvksgIiJyoSkpt9P39ZWs2p8NwF+7N+bFwW3x8/r9HF5aXsHfP5jPy9/+DEDHJtF8PHYYLePMaUuVk5PDL7/8QteuXZ29yVS8FREzFJRW8Pyi3Ty3aDeTr2jFvb2bAjC4XTRXt43i23U7+fsH89l28BgAzWLCmHJzf67t3trtP7ccDgf79u2jcePGeHhU5omUlBRsNpv6QorUcddeey1QOcv1pJYtW9KiRYvTPpsGDx582r7NmjWjadOmp+07aNCg0/Y93yekpk6dyqWXXspDDz102u+2bdvmjO+kXr16MX36dOx2+ylxVEVKSsoprzdt2sTy5cud7RSgstVESUkJRUVF+Pn58eOPPzJ58mS2b99OXl6esyf4yd//nvbt2zv/HBUVBUBSUtJp27KysoiOjmbTpk1s3ryZjz76yLmPYRg4HA727t1L69atTxv3ZPE4KyurWn8XVeWSSuAHH3zA8OHD8fb2PmV7WVkZs2fPZsSIEa44bL3x1L8X89jHCwEYO+QiVuR4s2p/NiG+nuzLLiKpCjN3zkd5eTnr16+ntLSU3bt3O/9hioiISNX4eNroEBvEtsx83ro+meuSY//wPTsOHeNP0z5j497Knof3DerG1BGXmdaj0TAMVq1aRV5eHps3b6Zz586mxCEiF7YKu4N3V6cz8YcdZORXzkadv/OYs4C7fvdhHnp/nrPdTFiALxOH9+HOASl4uXGP299asWIFhw8fpqioiHbt2gE4Z3eJSN128qbMb52t2Hmmfa1W6xnXPTjbvufj4osvJjU1lfHjx59xVm1NOtki4qSCggImTZrkLHj/lo+PD/v27ePKK69k9OjRPP3004SFhbFscMETlQAAR/tJREFU2TJuu+02ysrK/rCA+9ubYSeL4WfadnJCakFBAXfccQf33nvvaWM1btz4jOOeHMdVk1pdktFGjRrFwIEDadCgwSnb8/PzGTVqlAq4Z2EYBo/O+olnPl8KwCPXXcKPWTZWH8gh1NeTH+/s7vLiLVT+A7z44ovZs2cPLVu2dPnxRERE6oPC0gqKyu1EBlTewJ42uC0PX9qM+LDf/0JpGAbvL9zImLfnUlhSTkSQH/8cM5grU8zNwRaLhc6dO7Nt27ZTZiiIiNSWTYdzufmjDaRlVC6k3DTcjymDWjOsfQwHjubwj1k/8eHizQB4e9q4b1B3xg+9iBD/urXIV0JCAkePHv3DAoSIiKtNmTKFDh06nFYLat26NcuXLz9l2/Lly2nRosVZC9JeXl5VbqHaqVMnduzYQbNmzc74+3Xr1uFwOHjhhRechepPP/30nI9XlXi2bt161niq4uTT7DUVk0sKuL/tnfpbBw8e1CJYZ2EYBg++9wMv/mcVAE/c2J+vDzpYm55DuJ8nP97Zgw5xtfd3Fxoaqpk2IiIiVbT5cB7D/7WOuGAf5v21O1arBV9P2x8Wb/OKSrjzjW/4eGkaAH3bJfDh/dcSG+b6G7Znkp6ejqenp7NPV2RkpLN/l4hIbZq94RB/nr2R0goHYX6eTLisBaN7JlBcWsb4D39k+jerKC2vvCi+6eIknr6xH/ENQswNugoqKirYtWsXISEhxMTEABAXF0dkZORpT7CKiNS2pKQkbrrpJl5++eVTtj/44IN06dKFJ598kuHDh7Ny5UpeffVVXnvttbOOlZCQwN69e9m4cSMNGzYkMDDwrJ9zEyZM4Morr6Rx48YMGzYMq9XKpk2bSEtL46mnnqJZs2aUl5fzyiuvcNVVV7F8+XJmzpx52vEKCgpYsGABycnJ+Pn5nfONsXHjxtG9e3fGjBnDX/7yF/z9/dm6dSvz58/n1VdfrdIYDRo0wNfXl++//56GDRvi4+NzXjXR85tf/T86duxIp06dsFgs9OvXj06dOjl/kpOT6d27N/3796/JQ9YLDoeDu9/81lm8nfrngXyZ7mBtei4R/l78NLqny4u3JSUlLFmyhPz8fJceR0REpD6psDuYtng3XV9ayvasArZm5rMvu6hK71296yAdH3yDj5emYbNaePrGS5k/cYRpxdv9+/ezcuVKVq9erUVzRMR0LSL9MQwY1LoBO8b15a6e8bzxwxqa3f0yU+csp7TcTp+28ax59nY+vH9onSjeAuzcuZMtW7awadMm52O2FotFxVsRcRtPPPHEaW0AOnXqxKeffsrs2bNp164dEyZM4IknnvjdVgtDhw5l4MCB9O3bl8jISD7++OOz7puamso333zDvHnz6NKlC927d+fFF18kPj4egOTkZKZNm8bUqVNp164dH330EZMnTz5ljJ49e3LnnXcyfPhwIiMjefbZZ8/576B9+/YsXryYnTt30rt3bzp27MiECROIjf3jtmgneXh48PLLL/PGG28QGxt7Wg/h6rIYhmGc1wi/MWnSJOf/PvjggwQEBDh/5+XlRUJCAkOHDq32olgzZszgueeeIyMjg+TkZF555RW6du36h++bPXs2N9xwA4MHD+bLL7+s8vHy8vIIDg4mNzeXoCDXXkTZ7Q5uf/1r/vnTRiwWeGv01fRMas7FM1ZgscBPd/ao0mrV52vlypWkp6cTFhZGv3793L7Rv4hIbX5WV5U7xiSus2LvCUZ/voXNR/KAyiLDP//UwdlC4WwcDgfPf7WCf8z6iQq7g/jIYD4eO8z0FdIrKipYsGABsbGxtGnTptqLUYjUFe72We1u8ZjpRFEZYX7/vVbccDCX9jGBfL1mB+P+NZ9dR04A0DIunOdGDODKlNMXAXI3hmFgt9ud/SrLyspYvHgxLVq0oHHjxm4fv4j819k+r0tKSti7dy9NmjRR/2qptqr++6nRFgoTJ04EKqctDx8+vEb+4X7yySeMHTuWmTNn0q1bN6ZPn05qaio7duw4rcfub+3bt4+HHnqI3r17n3cMrlJeYWfkK3OcM2/ev+cabupTuYLdgjt74GG10CY6sFZi6dChA2VlZXTs2FFfIkRERH5HfkkF93+Vxrur0wEI9fVkyqDW3N79jy/EM7LzGfHyHOZv2gPAdT3b8Oboq0zp12i32zl48KBzZoOHhwf9+/dX4VZEap1hGLyybC//+G47C0f3JKVRCACBtgr6TnyPpVsPABAZ5MekP/XlL/074enh/p9VOTk5bNiwAR8fH3r06AFUTmzq37+/rrlERKRaXNIDd+TIkTU21rRp07j99tsZNWoUADNnzuTbb7/l3Xff5eGHHz7je+x2OzfddBOTJk1i6dKl5OTk/O4xSktLT3lUMC8vr8biP5uy8gr+NO0z5vy8HQ+blZl3DaFJ44bO37ePrd27776+vvTp06dWjykiUteZkT/EfL6eVtam5wJwa9dGTBnU+g9n3QL8sOFXRrw8h6zcQny9PHjptsv5S/9OplzEOxwOFixYQE5ODhaLxbmaroq3Iq6n3HGq7KIybv1kE1+mZQDw4bqDdG4YzPsLN3LP299RUFKGr5cHY6/uwd+H9CLIr+7MbjMMg6NHj2Kz2SguLsbXt/JmnYq3IiJSXS4p4Nrtdl588UU+/fRTDhw4QFlZ2Sm/P3HiRJXGKSsrY926dYwfP965zWq10r9/f1auXHnW9z3xxBM0aNCA2267jaVLl/7hcSZPnuxs/1AbSsrKGfbcp3y7bhdeHjbeGnMtU1ZlsX/eQX64vRsXNQ2vlTi2bt1KRETE785kFhGRs6vt/CHm2Xgol9ZRAXh72PCwWXlneDJlFQ56Ngn7w/eWlVfwj1k/8fxXKwBIim/A7LHDaNPIvPxrtVqJjY2luLgYT09P0+IQuRApd/zXqv3Z/Olf69ifXYyXzcoLV7fhxuQohr/wb/69YisAF7eJ54N7r6kTPW5LSkrIzc0lKioKqFwYOiUlhejoaGfxVkRE5FzU6CJmJ02aNIlp06YxfPhwcnNzGTt2LNdeey1Wq5XHH3+8yuMcO3YMu93uTIAnRUVFkZGRccb3LFu2jHfeeYe33nqryscZP348ubm5zp/09PQqv7e6CkvKuOqZj/l23S58vTx47/5hPLMik22ZBYT6ehIVWDvN69PT00lLS2PJkiUUFhbWyjFFROqb2swfYo6c4nLGfLGFTi8u4flFu53bUxqFVKl4++uR4/R65F1n8faugV34ecrtphRvCwoKKCkpcb5u06YNqampzlXQRaR2KHeAw2Hw3MJf6f3qcvZnF5MY7seKe3qRFGoheexM/r1iKx42K8/c1I+fJo2sE8XbnJwc5s6dy4oVK06ZwNS0adNzXgVdRETkJJfMwP3oo4946623GDRoEI8//jg33HADiYmJtG/fnlWrVnHvvfe64rDk5+dzyy238NZbbxEREVHl93l7e9fKqp95RSVc+cwslm49gL+PJ+/dfz2PLEhn17FCGoX4sHB0TxIj/F0eB0BsbCxxcXGEhobi7187xxQRqW9qK39I7TMMgw/XHeSh/2wlq6DyQnzv8eJqjfHh4k2MfuNbCkrKCA3w4d27BzOkW2tXhPuHDh06xM8//0xkZCQXXXQRFosFq9WqhTZETKDcAZ9tPsLfv9kGwPAOscy4pi0vfLmMKXOWYRjQLCaMWfcPpUvzOJMjrbqgoCD8/f2x2WyUlpZWe+FuEan7DMMwOwSpg6r678YlBdyMjAySkpIACAgIIDe3sk/clVdeyWOPPVblcSIiIrDZbGRmZp6yPTMzk+jo6NP23717N/v27eOqq65ybnM4HEDlwhw7duwgMTGx2udTE3IKixn4xIf8vOsQQX7evH//dfxt/gF+PVZIfKgvC0f3pEl47d2Ztdls9OzZs9aOJyIiUlekHcnj7i+2sGRPZcunVg0CmHFtEpc2r9rN4fziUsa8NZcPFm0CKh///fD+a2kUEeyymP9IQEAADoeD8vJyysvLVVgQEVMNax/DtUnRpLZswCWN/Rk46QPW7j4MwK39OvLSrQMJ8HXfIrdhGBw8eJCDBw/SvXt3502xiy++GB8fH/W4FbnAnGxHVVRUpHYpUm1FRUUAf9jWzCUF3IYNG3LkyBEaN25MYmIi8+bNo1OnTqxZs6Zad5u9vLzo3LkzCxYsYMiQIcB/F90YM2bMafu3atWKLVu2nLLt0UcfJT8/n5deeolGjRqd13mdq2N5hQyY9C827M0gLMCXWQ/9ibu++ZU9x4tICKss3iaEub54m52dTXZ2Nk2bNgXUPF9EROR/vbc6ndv/vYkKh4Gfl43H+jdnbJ9EvDyq1nVq3e7D3DDtM3YdOYHVamHCdX14dNjF2Gwu6Vr1u367YE5wcDB9+/YlNDQUq7X2YxGRC5vDYfDGqv2M6NwQf28PrFYL/x7RmfcWbqTT3z6ksKSc0AAf3rzzKob1bGt2uH+orKyMNWvWUFFRQVxcnHMhSBVuRC5MNpuNkJAQsrKyAPDz81O9Rf6QYRgUFRWRlZVFSEjIHy4m7JIC7jXXXMOCBQvo1q0b99xzDzfffDPvvPMOBw4c4IEHHqjWWGPHjmXkyJGkpKTQtWtXpk+fTmFhIaNGjQJgxIgRxMXFMXnyZHx8fGjXrt0p7w8JCQE4bXttycwpoP/jH5B2IIvIID9+fHwErRo2IGlt5azihaN70DjU9cXbkpISli5dSklJCVarlYSEBJcfU0REpK65qGkYNquFK9tEMX1wW+KreIPVMAymf7OKcf+aT3mFg4bhQcx6YCi928S7OOLT2e12NmzYQHp6OgMGDHC2SgoPr51FUkVEfiszv5RbZq1n/s5jrE3P4Z3hHTiRX8RfX/8Pn6+qbKNwSbsEPrj3GlOfVPgjJSUlzrYz3t7etG3blvLycvURFxEA51PiJ4u4IlUVEhJyxi4D/8slBdwpU6Y4/zx8+HAaN27MypUrad68+SntDapi+PDhHD16lAkTJpCRkUGHDh34/vvvnQubHThwwG1nkhw8lku/xz9g5+HjxIQGsGDSSFo3jATg0xEpHC8qIyaodnrPeXt706RJEw4fPkxsbGytHFNERMTd7TpawLwdR7n7oiYANIvw55e/XVKtnvRZOQWMevUr5q7fBcCQrq145+6rCQs0Z9Eai8VCbm4u5eXlZGRkmNY+SkTkp13HuOmj9WTkl+LraaVXQhgLt+zllpe+4NCJfDxsVp664VIeGtzTlCcVqsLhcLBu3Tr279/PZZddRnBwZZG5ZcuWJkcmIu7EYrEQExNDgwYNKC8vNzscqSM8PT3/cObtSRZDXZZPk5eXR3BwMLm5uQQFBZ3TGPuysrl04vvszcyhcUQw7z5wPYv35zMptaWpU+krKirw8HBJ3V5EpFbVxGd1TXPHmOTMisvtTF6wi6k/7abc4WDlPRfRLT60WmM4HA7eXbCBcf/6kRMFxXh72nhx1EDuTE2p9VzvcDiwWCzO4xYUFFBYWOi84S0i/+Vun9XuFk9NsDsMnpy/kyfm78QwoE1UAB/d2IHZC9fy7JfLMQxoHhPGrAeGktLM/RcqW758OYcOHaJ9+/a0atXK7HBExCT18fNa6o4aq+R9/fXXVd736quvrqnDuqVdh4/T7/H3ST+WR9OoUN69/3pu/iSNg7kl+HjYeKR/81qJw+FwsHfvXpo2beq8oFPxVkRELnTfbM3k3jlp7D1RuWBAastIIvyrt6jX5n0ZjH7jW1bsSAegfXwUH95/LUnxtV8wzcvL4+effyYhIYHmzSu/YwQEBBAQEFDrsYiIZOSVcMOH61m0+zgAt3VtzD3do7ntpU9Zt/sIAH/p34kXR6W65UJldrudPXv2kJCQ4FxQpn379rRs2ZKIiKotZikiIlLTaqyad3KRsT9isViw2+01dVi39PCHP5J+LI+WceG8dc91/OnjLRzOK6F1VAC3dq29hdTWrl3Lvn37OH78OF27dq2144qIiLij/SeKuO/LNL76pbIPfVywD9MHt2Vo+5gqz5jNLy7l8dmLeOnbVdgdBv4+njzxp77cc0U3PD2q9vhTTcvKyiI7O5uSkhKaNm1a5cewRERcwWFAWkY+/l42Zg5LouREFj0ffpui0sqFyt4afTVDe7QxO8yzWrZsGZmZmZSVldG2beWCaoGBgQQGBpocmYiIXMhqrIDrcDhqaqg67527r8bf25O/DurF9R9t4kheKW2jA1lwZw+iAmvvLnN0dDTp6ek0bNiw1o4pIiLijirsDi5+bQUHsovxsFp44OKmTBjQggDvqn0VMgyDL1Zt4753vuPQiXwAhnZvzfRbB9LQ5EV3EhMTVbwVEVM5HAZWa+WNsNhgHz4fmYKX1cFz//6JL/5/obJLk5rw/j1DTP/MPBPDMJw38po2bUpeXp5zAUgRERF3oOfpXSDE35eHh1/GpTNXkplfSlJMID/e0YMGtVi8BWjcuDENGjRwrpYqIiJyofKwWZlwWQs+WJvOa0Pb0za66jOp9mSc4J63v3MuUtYkKoRX/3IFV3Ru4apwf1d6ejr79u2jV69eWK1WLBYL7dq1MyUWEZH07GJu/Gg991/chKHtKxdLrijK5caX5nDoRD6eHlaevrEfD17dw+0Wn87Ozmbz5s00b97cudBzw4YNiYmJUes5ERFxKy7JSk888cTv/n7ChAmuOKzbKCqr4LI3VpGZX0pybBA/3tGdiIDaKd5mZmYSFhbm7Nek4q2IiFyIjuSV8ODXW7k2KZphyZUX5aO6NOLWro2q3C6htLyC579awVOfLaGkrAJPDyvjhlzEI0N74+vt6crwzx5TaSlr166lvLycvXv3kpiYaEocIiIA327NZMTHGzhRVM6BnGJSm0fwxL8X8fxXKzAMaBEbzqwHhtI5MdbsUM8oPT2dzMxMSktLiYmJcS4GqeKtiIi4G5dkpjlz5pzy+uRFhoeHB4mJifW+gOvn5cGLg9vy/KLdfHd7N8KruTDKucrMzGTp0qUEBwfTp08fvLxq57giIiLuosLuYMbyfTz2/Q7ySytYvu8Eg9tF42mzOh/vrYqftuzhrje/ZcehykV4+rZL4LW/DqJVw0hXhV4l3t7edOrUifz8fJo0aWJqLCJy4SqrcPDI3G28sHgPAJ0bBvPMZU3o89g/Wb+ncqGyv17WmWmjUvH3cZ9rktLSUhwOB76+vgC0atWK0tJSWrduXeWbeyIiImZwSQF3w4YNp23Ly8vjz3/+M9dcc40rDul2ru8Qy9D2MdiqcbF4vjw8PPD09MTf3193jUVE5IKzYu8J7vpiC5sO5wHQtXEIrw9NwtNW9Ud2M3MKePC9H/hoyRYAokL8eWFkKjdenGTKxX1FRQVpaWkkJCQQEhICQHx8fK3HISJy0r4TRfzpX+v4+UAOAPf2bkILn2KGPPU+xWUVhAX48vZdV3NN99bmBvo/0tPTWbt2LTExMXTv3h0ALy8vunTpYnJkIiIif6zWqnxBQUFMmjSJq666iltuuaW2Dmuq2izeAoSHh9OvXz98fX3drr+UiIiIqxwtKOXhb7fx7up0AEJ9PZkyqDV/6da4yrNu7XYHb8xbyyMfLSC3qBSLBe4a2IWnbryUEH9fV4b/u7Zs2cKuXbvIzMzksssuU34XEVNl5pfScdoScorLCfH15KWrWzHnp1W8vHo7AP3aN+GDe68hNizI5EhPFxAQQHl5OXl5eVRUVGjCi4iI1Cm1mrVyc3PJzc2tzUPWeyUlJdjtducqqQEBASZHJCIiUrs2Hc5zFm9v7dqIKYNaE1mN3vPrdh/mzpnfsHb3YQA6J8bw+l+vpEvzOJfEWx2tW7cmKyuLpKQkFW9FxHRRgd7c0rkha9JzGNM5nL+98RlHsgvw9LAy+ab+PHBVd7f4rDIMgyNHjlBeXu58aiE0NJS+ffsSERGhdgkiIlLnuKSA+/LLL5/y+mQC/de//sXll1/uikNekMrLy1m2bBnFxcX07t3b+WiliIhIfZddVEaoX2Vfxf4tInm0f3Mub9WAnk3CqjxGbmEJj876idd+WIPDYRDk583TN17K6NQu2KrRdqEmFRQUcPToUWd/Wx8fHwYMGKBig4iYZvexQnw8rcQFVz6N8NTA5jz+ySJufuFHAFrFRTDrgaF0bBpjZpinOHz4MMuXL8fLy4uYmBjn2iCRkeb2MRcRETlXLingvvjii6e8tlqtREZGMnLkSMaPH++KQ16QKioqqKiowG63u8WdbhEREVfLKS7n0e+28+G6g/zy90ucBYUnL29V5TEMw2D2sjTG/vMHMnIKALihdzteGJlKTFigS+KuisLCQubNm4fdbicwMJCIiAgAFW9FxDSfbjzMXz7dRMe4IBbc2YNfjxznxhc/Z8PeDADuGFC5UJmft/kLlTkcDuc1UUxMDKGhoTRo0ECfoSIiUi+4pIC7d+9eVwwr/8PX15dLL72UwsJCgoLcr8+UiIhITTEMgw/XHeSh/2wlq6AMgDlbMhhzUZNqjbPz8DHuevNbFmyu/K7SIjacGbdfQf/kxBqPubr8/f2Ji4ujsLDQuUK6iIgZisvtPPDVL7yxcj8ADgNe/m4tj344j+KyCsIDfXnn7sEM7lr1m2euUlpaSlpaGjk5OVx66aVYLBasViv9+vXTJBcREak31Lm9DiosLHT2vPXy8nI+EiQiIlIfpR3J4+4vtrBkzwkAWjUIYMa1SVzaPKLKYxSXljP5i6VMnbOcsgo73p42/jH0Yv5+TS+8Pc37OpSRkUFERIRzMZ3OnTtjtVpVdBAR0+zIKuD6D9ax+UgeFgvc1yue3dt/4cF3dwBwWXJT3rtniNssVGYYBvv376eiooKjR4/SoEEDAH2OiohIveKSK5aSkhJeeeUVFi5cSFZWFg6H45Tfr1+/3hWHvSDs3LmTLVu20KNHD2JjY80OR0RExKX+MXcbzy7cTYXDwNfTyoTLWjC2TyJeHlW/MP9+/S7GvD2X3RnZAAzs2IxXb7+CxOiq98t1hc2bN7N9+3aaNWtGp06dALQquoiY6sN1B7nzs80UltmJDPDigW7RvPzZPDJyCvDysDH55n7cf6W5C5U5HA6OHTvmLNT6+PjQqVMn/Pz8nNtERETqG5dcJdx2223MmzePYcOG0bVrV/UdqiGGYZCZmYndbic3N1cFXBERqffK7QYVDoMh7aKZPrgt8WF+VX7voeN53P/u93y2cisAsWGBvHTrQIb2aOMW300aNGjAjh07sNlsGIbhFjGJyIWrrMLB5AW7KCyz06dpGC0983nk7TkAtG5YuVBZhybmLlRWVlbGggULKCgoIDU11dlGLiEhwdS4REREXM0lBdxvvvmGuXPn0qtXL1cMf8GyWCz06tWLgwcP0qhRI7PDERERqXG7jhZgdxi0iqpcTGzCgBb0bRbO5a2jqjxGhd3OK3NXM+HjhRSUlGGzWrh3UDcm/akvgb7ergr9D9ntdoqKiggMrDy36OhoBg4c6HwtImImLw8rn45IYeayX1myYhVv7ssEYHRqCs//eYBbLFTm5eVFYGAgZWVlWgdEREQuKC4p4MbFxelipAaVlZU5+9xarVYaN25sckQiIiI1q7jczpQFvzLlp1/p3DCYZWN6YbVaCPD2qFbxduWOdEa/8Q2b/r/w0L1FQ2becSXJTaJdFXqVFBYWsnz5csrKyhgwYIAzr+v7koiYxTAM3luTTm5JBfdf3BTDMFi8YRtvfzaPkrIKIoL8ePfuwVzVpaVpMRYXF7NlyxY6duyIp6cnUNkr3MPDw/laRETkQuCSAu4LL7zAuHHjmDlzJvHx8a44xAWjoKCAn376iRYtWtCyZUs9XikiIvXOt1szuWdOGntPFAEQ5ONBXmkFIb5Vvzg/kV/Ewx/+yFvzK/vshwb4MPWWy7itX0e3WMjGy8uL8vJyKioqyM/PJzw83OyQROQCVlBawejPN/PhukPYrBY6RPsz7bMF/GftTgAGdEjkvTFDiAkz7yaTYRgsXryYvLw8/P39adu2LQC+vr6mxSQiImIWlxRwU1JSKCkpoWnTpvj5+Z12d/TEiROuOGy9dPDgQUpKSjhw4ADNmjXT4iYiIlJv7D9RxH1fpvHVL5WzZeOCfZg+uC1D28dU+YalYRh8sGgTD70/j2N5lQXgP/ftwLMjLiMy2N9lsVfFb5+g8fT0pFevXnh7e6v4ICKm2nQ4l+s/WMfOo4XYrBZGJkfwpyn/IvP/Fyqbekt/7h3UzfSbXxaLheTkZNLS0mjYsKGpsYiIiJjNJdXAG264gUOHDvHMM88QFRWlWaPnoVWrVnh6ehIbG6virYiI1BvrD+Zw0avLKS534GG18MDFTZkwoAUB3lXPdb8cyGL0m9+wdOsBANo2iuT1O66kdxvzn/45cOAA69ato1u3bs5FR0NCQswNSkQuaIZh8Oaq/dz35S+UVjiIC/ahZ2g5737xPQBtGkXy8QNDaZ9gXsuZnJwcHA4HYWFhAMTExBAdHa3rSRERueC5pCK4YsUKVq5cSXJysiuGr/ccDgcWi8X5RSUxMdHkiERERGpWcmwwrRoEEOjtwWtD29M2uuqP6RaWlPHEp4uZ9p+VVNgd+Hl7MvH6PjxwVQ88PWwujLrqTpw4QXl5OXv27HEWcEVEzGIYBn+evZEP1h4EoE+TEI7u3sq/Nx4BYMzlXXl2xGX4epvXVzYjI4Nly5bh6+vLZZdd5nyCQcVbERERFxVwW7VqRXFxsSuGrvcMw2DNmjVYLBZSUlJMf3RJRESkJhzOLeHZhb8yeVBrfD1t2KwWfvhrdyL8vap1cf716u3c8/Z3HDiWC8Dgri156dbLiW8Q4qLIq87hcDjzdlJSEv7+/roJKyJuwWKxkNIwhFnrD3FVoj9zFy2mtKyCyCA//jlmCINSWpgdIuHh4fj6+hIUFIRhGGaHIyIi4lZcUsCdMmUKDz74IE8//TRJSUmn9cANCgpyxWHrhezsbA4cqHwUNDExUYuciIhInZaRV8LUhb8yc8V+SiochPh68nhq5YrmkQHeVR5nf1YO977zHV+v2QFAfGQwr/zlClNXRz+poqKCzZs3U1paSo8ePQCw2Ww0b97c5MhE5EJmGAZZBWVEBVZ+1l7fLoLPF+YzZ95aAAZ2bMY/xwwmOtS8hcry8/MJDKw8vqenJ5deeik+Pj6adSsiIvI/XFLAHThwIAD9+vU7ZbthGFgsFux2uysOWy+EhYXRq1cvysrKVLwVEZE6Kyu/lGcX/sprK/ZRXO4AoGdCKFe1iarWOGXlFbz4n1VM+nQRxWUVeNisPHh1Dx67rg/+Pl6uCL3aioqK2L17N4Zh0LJlS2fvRhERs2QXlXHrJ5vYciSP9WMvZsXWffz51S/JzCnE29PGsyMuY8zlXU172s8wDDZv3syOHTvo3bs3MTExAFrkUURE5CxcUsBduHChK4at104WtwH1yhMRkTrLMAzGf7udV5bvpais8oZtt8YhTEptyYCWkdWaVbX4l33c9ea3bE0/CsDFbeJ57a+DaNu4gUtir46ysjJnf8agoCDatWtHSEiIirciYrpV+7P507/WsT+7GC+bhVvemMfXi9cAlYs9fjx2GEnx1buZVtMsFgsOR+XNvWPHjjkLuCIiInJmLing9unTxxXD1luZmZls27aNHj164O1d9cdJRURE3I3FYmFfdhFFZXa6NAphUmoLBrZqUK3CbVZOAX/7YD4fLNoEQESQHy+MHMAtlySb/lhtRUUFmzZt4sCBAwwcONA5W6x169amxiUi4nAYTFu8h/Fzt1HhMGgY5I139n6+XnwIgHuu6MrUW8xbqMwwDBwOBzZb5WKT7du3JyYmhujoaFPiERERqUtcUsBdsmTJ7/7+4osvdsVh6yS73c6aNWsoKipi+/btJCcnmx2SiIhIlZ0oKmPa4j2M6tKIxAh/AJ4Y2JKbOzdkUOvqFW4dDgdv/7iehz/8keyCEgD+ellnJt/cj7BAP5fEX102m42cnBzKy8s5ePCg+tyKiFs4VlDKn2dv5NttWQB0bODNLxvWUFZWToNgf/45ZjBXdDZvobKysjLWrl2L1Wqle/fuQOXnqYq3IiIiVeOSAu4ll1xy2rbfXsCpB+5/2Ww2evfuzfbt22nXrp3Z4YiIiFRJdlEZLy7Zw0tL95JXUsGh3BL++acOALSIDKBFZEC1xtu49wij3/iWVTsPApCcEMXMO66ke8tGNR16tWVlZREREYHVasVisdCpUyfKy8tp0MD8Vg4iIgAP/Wcr327Lwttmpbl3IRt+XgfAFZ2a8+6YwUSFVO8zuabl5+dz6FDlTODWrVsTHBxsajwiIiJ1jUsKuNnZ2ae8Li8vZ8OGDTz22GM8/fTTrjhknRYcHEy3bt3MDkNEROQP5RaXM33JHl5csofckgoA2scEMaTduc2iyi8uZcLHC3l57s84HAYBPl48eUNfxlzRFY//f8zWTD///DP79++nU6dONGvWDIDQ0FCToxIROdWzV7ZhQ/oJ0nf+QtqJE3h72nh+5ADuvryr6a1nAMLDw+nUqROhoaEq3oqIiJwDlxRwz5SUL7vsMry8vBg7dizr1q1zxWHrjPLyclavXk1SUhJBQUFmhyMiIlIlLy7ezRPzd5FTXA5Au+hAHk9twTXtYrBaq1cgMAyDz1Zu5f53v+fwiXwAruvZhhdHDSQu3H1yY1hYGAcOHKC0tNTsUEREzqi4tJynPlnA5lWrAUiKb8Cs+4fSzsSFygoKCti4cSMpKSn4+PgAkJiYaFo8IiIidZ1LCrhnExUVxY4dO2rzkG5p06ZNHDp0iLy8PFJTU7FarWaHJCIi8odyiivIKS6nTVQAj6e2ZGhS9Qu3AL8eOc6Yt+byw8bdACRGh/LqX65gYCdz+8k6HA727t1LWFiYc5ZtYmIi0dHRBAYGmhqbiMjZvPrdal6ZW1m8vW9QN6bc0h8fL3MWKjtp9erVHDt2jA0bNtCjRw9TYxEREakPXFLA3bx58ymvDcPgyJEjTJkyhQ4dOrjikHVKu3btKCgoICkpScVbERFxSwWlFby6bC/d4kPp2ywCgAf6NKV1VADXJcdiO4fCbWl5BVPnLOOZz5dSWm7Hy8PGw9dexMPXXGTaqui/lZaWxvbt24mIiKBv375YLBasVquKtyLi1u4d1I2FaXu594pupt8IO6lz585s3LiR9u3bmx2KiIhIveCSAm6HDh2wWCwYhnHK9u7du/Puu++64pB1io+PD3369HGLflQiIiK/VVhawYzl+3hu0W6OFZbRPT6UFff0wmKxEOLryZ86xlV7TMMw+GbtTh587wd2HTkBQP/2TZnx1ytoERtR06dwzpo1a8b+/ftp2LAhhmEoT4tIneDt6cHcR282NYbjx49TUlJCXFxljggODqZPnz6mxiQiIlKfuKSAu3fv3lNeW61WIiMjnf2PLkS7du0iMDCQ6OjKRV50USgiIu6kqKyC11fs59mFv5JVUAZAswh/RveMxzDgXNJWeYWd2cvSePbL5aQdyAIgOiSAF29NZXivdqbmwvLycrZv3w5AUlISAH5+fgwaNEhPx4iIVMPRo0dZtGgRNpuNAQMGEBAQYHZIIiIi9Y5LCrjx8fGuGLbOysjIYMOGDVgsFgYMGKCVV0VExK3MWn+QsV9vJTO/cqGupuF+PNa/BTd3jsPDVv1iZmFJGW//uJ5pX6/kwLFcAAJ9vRid2oVHhvYm2N/8G7rHjx9n27ZtWK1WmjZtir+/P4CKtyIi1RQeHk54eDi+vr54eXmZHY6IiEi9VKNXKT/99BNt2rQhLy/vtN/l5ubStm1bli5dWu1xZ8yYQUJCAj4+PnTr1o3Vq1efdd+33nqL3r17ExoaSmhoKP379//d/WtDZGQkjRo1olmzZgQFuc/K2iIiIgAWLGTml5IQ5ss71yezfVxf/ty1UbWLt8fyCnl89kIa//VF7n/3ew4cyyUqxJ9nburHgTcfYOqIy0wt3paXlzv/HB0dTWJiIj169MDPz8+0mERE6qKjR4862+VZrVZ69+5N9+7dVcAVERFxkRqdgTt9+nRuv/32MxYpg4ODueOOO5g2bRq9e/eu8piffPIJY8eOZebMmXTr1o3p06eTmprKjh07aNCgwWn7L1q0iBtuuIGePXvi4+PD1KlTGTBgAL/88ouzJ1Nts9lsdO/eHVDrBBERMVdphZ23Vx0g0MeDESmNALi+QywOw+C65Fi8PKp/b3d/Vg4vfL2CdxZsoKi0skiaGB3K3wb3YmTfZNNXQy8tLWXjxo0cO3aM1NRUPDwqv/507tzZ1LhEROqiDRs2sGvXLjp06ECLFi0A8PQ0fyFKERGR+qxGC7ibNm1i6tSpZ/39gAEDeP7556s15rRp07j99tsZNWoUADNnzuTbb7/l3Xff5eGHHz5t/48++uiU12+//Taff/45CxYsYMSIEdU69vkoKCggMzOTxMREQIVbERExV1mFg3dXH+DpH3dxMLeE6EBvrkuOxdfThs1q4abODas95pb9mTz75XI+XroFu6NyJlanpjGMu6YXQ7u3wXYO7RdcwWazkZWVRXFxMZmZmabd0BURqQ9O9rgtKyszORIREZELR40WcDMzM3/37quHhwdHjx6t8nhlZWWsW7eO8ePHO7dZrVb69+/PypUrqzRGUVER5eXlhIWFnXWf0tJSSktLna/P1AKiOsrKyliyZAkFBQUYhkGzZs3OazwREXFPNZ0/XKHc7uC9Nek89eMuDmQXAxAX7MMj/ZpjO4ebi4ZhsHTrfqbOWc7c9buc2/u3b8q4a3rRr31T029aGobBsWPHiIyMBCq/f3Tp0gUvL6/f/T4gIlIb6kLu+C3DMCgvL3e2R2jWrBnh4eH6PBUREalFNVrAjYuLIy0t7awFy82bNxMTE1Pl8Y4dO4bdbicqKuqU7VFRUc6Vo//IuHHjiI2NpX///mfdZ/LkyUyaNKnKcf0RT09PEhIS2Lt3r2b5iIjUYzWdP2rajzuPcvu/N7HvRGXhNibIm/GXNuf27o3x8bRVayyHw8HXa3Ywdc5yVu08CIDVamFo99aMu+YiOifG1nj858LhcLB06VIyMzPp06eP8ztEdHS0yZGJiFRy99zxWyUlJaxevZry8nL69u2L1WrFYrGoeCsiIlLLavTZxiuuuILHHnuMkpKS035XXFzMxIkTufLKK2vykL9rypQpzJ49mzlz5uDjc/ZFU8aPH09ubq7zJz09/byOa7FYaNOmDQMGDMDX1/e8xhIREfdV0/mjpoX5ebLvRDFRgd5MH9yW3Y/0457eTapVvC0rr+CfCzbQ9r7XuGbqJ6zaeRBvTxt3DOjMjlfG8OlD17tN8RYqn9QJDAzEZrNRUFBgdjgiIqdx99zxW3a7nePHj5OTk0N2drbZ4YiIiFywanQG7qOPPsoXX3xBixYtGDNmDC1btgRg+/btzJgxA7vdzj/+8Y8qjxcREYHNZiMzM/OU7ZmZmX84k+b5559nypQp/Pjjj7Rv3/539/X29sbb27vKcVWVmvmLiNRvrsof56LC7mDWhkMczCnhkf7NAejUMIQv/pxCastI/Lyql/Lzi0t5c946XvzPSg6dyAcg2M+buwZ24d5B3YgODazxczgXdrudX3/9lcaNGztvmrZr146WLVvi7+9vcnQiIqdzp9xxJoZhOFvh+Pv70717d/z8/AgODjY5MhERkQtXjRZwo6KiWLFiBaNHj2b8+PEYRuWCJhaLhdTUVGbMmHFaO4Tf4+XlRefOnVmwYAFDhgwBKh+NXLBgAWPGjDnr+5599lmefvppfvjhB1JSUs7rnERERNyZ3WHw8YZDPDFvJ7uOFeJls3JL54Y0Cq0sZl6TVPXWRQBZOQW8PPdnZny3hpzCyidqYkIDeOCqHtwxoDNBfmd/osUMa9as4cCBA+Tm5tK1a1eg8vvDyV6NIiJSdXl5eaxevZqUlBRCQkIAqtUCT0RERFyjRgu4APHx8cydO5fs7Gx+/fVXDMOgefPmhIaGntN4Y8eOZeTIkaSkpNC1a1emT59OYWEho0aNAmDEiBHExcUxefJkAKZOncqECROYNWsWCQkJZGRkAJWrpZ5cMVVERKSuszsMPt14mCfm72R7VmWrgHA/T/7etxlhftV/AmRPxgme/2oF/1y4kZKyCgBaxoXzt8G9uLlPe7w9a/wrQ41o3rw5WVlZzgXLRETk3KWlpXHixAk2bNhA3759zQ5HRERE/p/LrsZCQ0Pp0qXLeY8zfPhwjh49yoQJE8jIyKBDhw58//33zpm8Bw4cwGr9byvf119/nbKyMoYNG3bKOBMnTuTxxx8/73hERETMtuFgLjfNWs+2zMrCbZifJw9dksiYXk0I9Kleat+w5whT5yzj3yu34nBUPjnTtXkcD19zEYO7tjwlx5qtrKyMX375heDgYJo2bQpAeHg4gwYNwmar3qJsIiJyuk6dOmG1WklOTjY7FBEREfkN95xO8z/GjBlz1pYJixYtOuX1vn37XB+QiIiIiRqG+HAgu5gQX08e7NOUe3s3Icin6rNuDcNgYdpeps5ZzryNu53bB3ZsxrhretGnbYKz/6E72b9/P7t27cLb25vGjRvj4VH5NUbFWxGRc5OVlUVOTg4tWrQAwMfHh+7du5sclYiIiPyvOlHAFRERuVA5HAZfpmWwYNcxZgxNAiAywJsvR3WhS6MQgn2rXri12x18uXo7U75YxtrdhwGwWS0M79WOvw/pRXKT318g1AwVFRXOQm1iYiJZWVkkJiY6t4mIyLnJyclh0aJFWCwWwsLCiIiIMDskEREROQtd/YiIiLghwzD4+pdMHv9hBxsP5wEwvEMsFyeGA9C/RdV7vpaWV/DBok089+Vydh05AYCPlwe39evIg1f3pEnUufWpd6WioiI2bNhAWVkZl1xyCRaLBavVSq9evcwOTUSkXggJCSEhofKJi+DgYLPDERERkd+hAq6IiIgbMQyDb7Zm8vi8naw/mAtAoLcH9/VuQlJMYLXGyi0sYeYPa5n+zSoycir75YYG+DDm8q7cc0U3IoP9azz+mmIYBhkZGTgcDnJycs55MVQREfmvgwcPEh0d7XyKISUlxa16nYuIiMiZqYArIiLiJtKzi7n2/TWsTa8s3Pp72bi3dxMe7JNIuL9Xlcc5ciKfl75dxes/rCWvqBSAhuFBjL26B7f370SAr7dL4j8fhmGQnZ1NWFgYAP7+/qSkpBASEqKZYSIiNWDDhg3s2rWLZs2a0alTJwAVb0VEROoIFXBFRETcRHSQNyeKyvHzsnFPryY8dElTIgKqXmzddfg4z321nPcXbqKswg5Am0aR/H1IL264qB1enu6Z9svKyli8eDG5ubmkpqYSGFg50zg+Pt7kyERE6o+YmBh+/fVXfHx8MAzDLRerFBERkTNzzys5ERGRC5CnzcrsmzsTH+pLg8CqF27X7DrE1DnL+OLnbRhG5bZerRox7pqLGNS5udvPsPL09MTb2xur1UpeXp6zgCsiIufO4XBQXFyMv39lu5zo6GiuuOIK52sRERGpO1TAFRERcSNdGodUaT/DMJi/aTdT5yznpy17nduvTGnBuGt6cVFr9529WlFRwe7du2nWrBk2mw2LxULnzp2x2Wz4+PiYHZ6ISJ1XXFzMqlWrKCwsZMCAAXh5VbbhUfFWRESkblIBV0REpA6psNv5fOU2ps5Zxoa9GQB42Kzc2DuJvw3uSbv4KJMj/H2GYbB48WKOHz+Ow+GgdevWgIoKIiI1ycPDg6KiIsrKysjJyaFBgwZmhyQiIiLnQQVcERGROqC4tJz3Fm7k+a9WsCczGwA/b0/+ellnHriqO40jQ8wN8Hc4HA6gcrEci8VCYmIixcXFapUgIlKDHA6Hs2WOp6cnPXv2xNPTk4CAAJMjExERkfOlAq6IiIgbyy4o5rXv1/Dytz+TlVsIQHigL/cO6sbdl3clPNDP5Ah/37Zt29i1axfJycnORcni4+Np2LAhHh76GiIiUhOys7NZtWoVycnJxMbGAhAaGmpyVCIiIlJTdOUkIiLihg4ey+XF/6zizfnrKCgpAyA+MpiHBvfk1n4d8fP2MjnC0xmGwfHjxwkPD3eubl5RUUFJSQmHDx92FnAtFouKtyIiNWj//v3k5+eTlpZGTEyM8zNYRERE6gddPYmIiLiRbQeP8tyXy/lwyWbKKypbDyTFN2DckIu4vldbPD1sJkd4ZoZh8N1331FQUED//v0JCwsDoEmTJkRERKj/ooiICyUlJWGxWGjVqpWKtyIiIvWQCrgiIiJuILugmFGvfslXq3c4t/VpG8+4ay5iYMdmbnVBfnKmbU5ODs2aNQMqZ9WGhoZSWlpKQUGBs4AbEBCg/osiIi5ms9lITk42OwwRERFxERVwRURE3ECwnzc7Dh3HYoEhXVsx7pqL6NaiodlhnVFBQQE//fQTFouFRo0a4e3tDUCHDh3w8vLCZnPPWcIiIiIiIiJ1kQq4IiIibsBqtfLm6KuIDPKjVcNIs8NxysvLY8+ePXh5edGmTRsAAgMDiYiIwN/fn4qKCmcB19fX18xQRURERERE6iUVcEVERNxE7zbxZoeAYRgYhoHVagUqZ9vu3LkTX19fWrdu7Wzl0LdvX7dq6yAiIiIiIlJfqYArIiIiAOzatYsdO3bQqlUrZ2/bqKgoEhISiIuLwzAMZ9FWxVsREREREZHaYTU7ABEREal9hmFw4sQJHA6Hc5vdbqeoqIjDhw87t9lsNrp27UpcXJxzVq6IiIiIiIjUHs3AFRERucAYhsGPP/5IdnY2l1xyCQ0aNAAgPj6egIAAoqOjTY5QRERERERETtJUGhERkXrMMAyys7PZtWuXc5vFYiEkJASbzUZ+fr5zu6+vLw0bNsTDQ/d3RURERERE3IWu0EREROqxkpIS5s+fD0BcXBx+fn4AJCUl0bFjRxVrRURERERE3Jyu2kREROqJwsJC9uzZg8VioV27dkDlrNro6Gg8PDyoqKhw7uvj42NWmCIiIiIiIlINKuCKiIjUUYZhYBiGc3GxwsJCtm3bhpeXF61bt8ZmswHQu3dvLBaLmaGKiIiIiIjIOVIBV0REpA7at28f27ZtIyEhgdatWwMQERFBQkLCaYuQqXgrIiIiIiJSd2kRMxERETdnGAa5ubnY7XbnNrvdTn5+PocPH3Zus1qtdO3alcaNGztn34qIiIiIiEjdphm4IiIibm7JkiVkZmbSq1cv4uLiAGjYsCEeHh7ExsaaHJ2IiIiIiIi4kmbgioiIuJHc3Fx27tx5yrbg4GCsVisFBQXObd7e3sTHx+Pp6VnbIYqIiIiIiEgt0gxcERERN1FeXs78+fNxOBxERUURHBwMQKtWrWjTpg1eXl4mRygiIiIiIiK1TQVcERERN+Hp6UlMTAwOhwOHw+Hc7uPjY2JUIiIiIiIiYiYVcEVERNxIz549sVgsZochIiIiIiIibkI9cEVERNyIirciIiIiIiLyWyrgioiIiIiIiIiIiLgpFXBFRERERERERERE3JQKuCIiIiIiIiIiIiJuSgVcERERERERERERETelAq6IiIiIiIiIiIiIm6oTBdwZM2aQkJCAj48P3bp1Y/Xq1b+7/7///W9atWqFj48PSUlJzJ07t5YiFREREREREREREak5bl/A/eSTTxg7diwTJ05k/fr1JCcnk5qaSlZW1hn3X7FiBTfccAO33XYbGzZsYMiQIQwZMoS0tLRajlxERERERERERETk/Lh9AXfatGncfvvtjBo1ijZt2jBz5kz8/Px49913z7j/Sy+9xMCBA/nb3/5G69atefLJJ+nUqROvvvpqLUcuIiIiIiIiIiIicn48zA7g95SVlbFu3TrGjx/v3Ga1Wunfvz8rV64843tWrlzJ2LFjT9mWmprKl19+edbjlJaWUlpa6nydm5sLQF5e3nlELyIirnTyM9owDNNiUP4QEal7zM4fyh0iInWT2flDLmxuXcA9duwYdrudqKioU7ZHRUWxffv2M74nIyPjjPtnZGSc9TiTJ09m0qRJp21v1KjROUQtIiK1KT8/n+DgYFOOrfwhIlJ3mZU/lDtEROo2M68/5MLl1gXc2jJ+/PhTZu06HA5OnDhBeHg4FovlnMbMy8ujUaNGpKenExQUVFOhugWdW92kc6ubdG5nZxgG+fn5xMbGuiC6qqnp/KH/3nWTzq1u0rnVTTVxbmbnD117VI/OrW7SudVNOrffZ3b+kAubWxdwIyIisNlsZGZmnrI9MzOT6OjoM74nOjq6WvsDeHt74+3tfcq2kJCQcwv6fwQFBdW7D76TdG51k86tbtK5nZnZd75dlT/037tu0rnVTTq3uul8z83M/KFrj3Ojc6ubdG51k87t7My+/pALl1svYubl5UXnzp1ZsGCBc5vD4WDBggX06NHjjO/p0aPHKfsDzJ8//6z7i4iIiIiIiIiIiLgrt56BCzB27FhGjhxJSkoKXbt2Zfr06RQWFjJq1CgARowYQVxcHJMnTwbgvvvuo0+fPrzwwgsMGjSI2bNns3btWt58800zT0NERERERERERESk2ty+gDt8+HCOHj3KhAkTyMjIoEOHDnz//ffOhcoOHDiA1frficQ9e/Zk1qxZPProozzyyCM0b96cL7/8knbt2tVq3N7e3kycOPG0x6PqA51b3aRzq5t0bheW+vx3onOrm3RudZPO7cJTn/9edG51k86tbtK5ibgvi2EYhtlBiIiIiIiIiIiIiMjp3LoHroiIiIiIiIiIiMiFTAVcERERERERERERETelAq6IiIiIiIiIiIiIm1IBV0RERERERERERMRNqYDrAjNmzCAhIQEfHx+6devG6tWrzQ6pRixZsoSrrrqK2NhYLBYLX375pdkh1YjJkyfTpUsXAgMDadCgAUOGDGHHjh1mh1UjXn/9ddq3b09QUBBBQUH06NGD7777zuywXGLKlClYLBbuv/9+s0M5b48//jgWi+WUn1atWpkdVo05dOgQN998M+Hh4fj6+pKUlMTatWvNDsst1Mf8UV9zByh/1BfKH3WH8seZ1cfcAfU3f9Tn3AEXTv6oT7kDlD9E6gIVcGvYJ598wtixY5k4cSLr168nOTmZ1NRUsrKyzA7tvBUWFpKcnMyMGTPMDqVGLV68mLvvvptVq1Yxf/58ysvLGTBgAIWFhWaHdt4aNmzIlClTWLduHWvXruXSSy9l8ODB/PLLL2aHVqPWrFnDG2+8Qfv27c0Opca0bduWI0eOOH+WLVtmdkg1Ijs7m169euHp6cl3333H1q1beeGFFwgNDTU7NNPV1/xRX3MHKH/UB8ofdYfyx5nV19wB9Td/1OfcARdG/qiPuQOUP0TcniE1qmvXrsbdd9/tfG23243Y2Fhj8uTJJkZV8wBjzpw5ZofhEllZWQZgLF682OxQXCI0NNR4++23zQ6jxuTn5xvNmzc35s+fb/Tp08e47777zA7pvE2cONFITk42OwyXGDdunHHRRReZHYZbuhDyR33OHYah/FHXKH/ULcofZ3Yh5A7DqN/5o77nDsOoX/mjPuYOw1D+EKkLNAO3BpWVlbFu3Tr69+/v3Ga1Wunfvz8rV640MTKpjtzcXADCwsJMjqRm2e12Zs+eTWFhIT169DA7nBpz9913M2jQoFP+f1cf7Nq1i9jYWJo2bcpNN93EgQMHzA6pRnz99dekpKRw3XXX0aBBAzp27Mhbb71ldlimU/6oH5Q/6hblj7pF+eN0yh31Q33NHVA/80d9zR2g/CHi7lTArUHHjh3DbrcTFRV1yvaoqCgyMjJMikqqw+FwcP/999OrVy/atWtndjg1YsuWLQQEBODt7c2dd97JnDlzaNOmjdlh1YjZs2ezfv16Jk+ebHYoNapbt2689957fP/997z++uvs3buX3r17k5+fb3Zo523Pnj28/vrrNG/enB9++IHRo0dz77338v7775sdmqmUP+o+5Y+6Rfmj7lH+OJ1yR91XH3MH1N/8UV9zByh/iNQFHmYHIOJO7r77btLS0upNvx+Ali1bsnHjRnJzc/nss88YOXIkixcvrvNfotLT07nvvvuYP38+Pj4+ZodToy6//HLnn9u3b0+3bt2Ij4/n008/5bbbbjMxsvPncDhISUnhmWeeAaBjx46kpaUxc+ZMRo4caXJ0IudO+aPuUP6om5Q/pD6qj7kD6mf+qM+5A5Q/ROoCzcCtQREREdhsNjIzM0/ZnpmZSXR0tElRSVWNGTOGb775hoULF9KwYUOzw6kxXl5eNGvWjM6dOzN58mSSk5N56aWXzA7rvK1bt46srCw6deqEh4cHHh4eLF68mJdffhkPDw/sdrvZIdaYkJAQWrRowa+//mp2KOctJibmtC/vrVu3rjePaJ0r5Y+6TfmjblH+qJuUP06n3FG31dfcAfUzf1xIuQOUP0TckQq4NcjLy4vOnTuzYMEC5zaHw8GCBQvqTc+f+sgwDMaMGcOcOXP46aefaNKkidkhuZTD4aC0tNTsMM5bv3792LJlCxs3bnT+pKSkcNNNN7Fx40ZsNpvZIdaYgoICdu/eTUxMjNmhnLdevXqxY8eOU7bt3LmT+Ph4kyJyD8ofdZPyR92k/FE3KX+cTrmjbrrQcgfUj/xxIeUOUP4QcUdqoVDDxo4dy8iRI0lJSaFr165Mnz6dwsJCRo0aZXZo562goOCUO3B79+5l48aNhIWF0bhxYxMjOz933303s2bN4quvviIwMNDZMyw4OBhfX1+Tozs/48eP5/LLL6dx48bk5+cza9YsFi1axA8//GB2aOctMDDwtF5h/v7+hIeH1/keYg899BBXXXUV8fHxHD58mIkTJ2Kz2bjhhhvMDu28PfDAA/Ts2ZNnnnmG66+/ntWrV/Pmm2/y5ptvmh2a6epr/qivuQOUP+oq5Y+6SfnjzOpr7oD6mz/qc+6A+ps/6nPuAOUPkTrBkBr3yiuvGI0bNza8vLyMrl27GqtWrTI7pBqxcOFCAzjtZ+TIkWaHdl7OdE6A8c9//tPs0M7brbfeasTHxxteXl5GZGSk0a9fP2PevHlmh+Uyffr0Me677z6zwzhvw4cPN2JiYgwvLy8jLi7OGD58uPHrr7+aHVaN+c9//mO0a9fO8Pb2Nlq1amW8+eabZofkNupj/qivucMwlD/qE+WPukH548zqY+4wjPqbP+pz7jCMCyt/1JfcYRjKHyJ1gcUwDMPlVWIRERERERERERERqTb1wBURERERERERERFxUyrgioiIiIiIiIiIiLgpFXBFRERERERERERE3JQKuCIiIiIiIiIiIiJuSgVcERERERERERERETelAq6IiIiIiIiIiIiIm1IBV0RERERERERERMRNqYArIiIiIiIiIiIi4qZUwBURERERERERERFxUyrgioiIiMhp9u3bh8Vicf6EhYXRp08fli5desp+RUVFjB8/nsTERHx8fIiMjKRPnz589dVXJkUuIiIiIlK/qIArIiIiImf1448/cuTIEZYsWUJsbCxXXnklmZmZzt/feeedfPHFF7zyyits376d77//nmHDhnH8+HEToxYRERERqT8shmEYZgchIiIiIq51ySWXkJSUhM1m4/3338fLy4unnnqKG2+8kTFjxvDZZ58RFRXFK6+8wuWXX86+ffto0qQJGzZsoEOHDgBs2bKF9u3b89VXX3H11VcDEBISwksvvcTIkSNNPDsRERERkfpLM3BFRERELhDvv/8+ERERrF69mnvuuYfRo0dz3XXX0bNnT9avX8+AAQO45ZZbKCoqOu29xcXFfPDBBwB4eXk5t0dHRzN37lzy8/Nr7TxERERERC4kmoErIiIicgG45JJLsNvtzh62drud4OBgrr32WmdhNiMjg5iYGFauXEl0dDRNmjTB19cXq9VKUVERhmHQuXNnVq5ciaenJwBLlizhpptuIjMzk+TkZC666CKGDRtGr169TDtXEREREZH6RDNwRURERC4Q7du3d/7ZZrMRHh5OUlKSc1tUVBQAWVlZzm2ffPIJGzZs4PPPP6dZs2a89957zuItwMUXX8yePXtYsGABw4YN45dffqF37948+eSTtXBGIiIiIiL1n4fZAYiIiIhI7fht4RXAYrGcss1isQDgcDic2xo1akTz5s1p3rw5FRUVXHPNNaSlpeHt7X3KuL1796Z3796MGzeOp556iieeeIJx48ad0m5BRERERESqTzNwRURERKRKhg0bhoeHB6+99trv7temTRsqKiooKSmppchEREREROovFXBFREREpEosFgv33nsvU6ZMcS50dskll/DGG2+wbt069u3bx9y5c3nkkUfo27cvQUFBJkcsIiIiIlL3qYArIiIiIlU2cuRIysvLefXVVwFITU3l/fffZ8CAAbRu3Zp77rmH1NRUPv30U5MjFRERERGpHyyGYRhmByEiIiIiIiIiIiIip9MMXBERERERERERERE3pQKuiIiIiIiIiIiIiJtSAVdERERERERERETETamAKyIiIiIiIiIiIuKmVMAVERERERERERERcVMq4IqIiIiIiIiIiIi4KRVwRURERERERERERNyUCrgiIiIiIiIiIiIibkoFXBERERERERERERE3pQKuiIiIiIiIiIiIiJtSAVdERERERERERETETf0fQ7WlW8zddSYAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, axs = plt.subplots(2, 3, figsize=(15, 7), gridspec_kw={'wspace': 0.1})\n", "\n", "bar_width = 0.25\n", "offsets = [-bar_width, 0.0, bar_width]\n", "\n", "legend_drawn = False\n", "for c, cohort in enumerate(['nlvo_ivt', 'lvo_mix', 'weighted_treated']):\n", " dist_drip = dict_drip_ship[cohort]['values']\n", " std_drip = dict_drip_ship[cohort]['std']\n", " dist_cumsum_drip = dict_drip_ship[cohort]['cumsum']\n", " dist_moth = dict_mothership[cohort]['values']\n", " std_moth = dict_mothership[cohort]['std']\n", " dist_cumsum_moth = dict_mothership[cohort]['cumsum']\n", " \n", " if 'nlvo' in cohort:\n", " ax = axs[0, 0]\n", " ax_cumsum = axs[1, 0]\n", " dist_no_treat = dict_no_treat['nlvo']['values']\n", " dist_cumsum_no_treat = dict_no_treat['nlvo']['cumsum']\n", " elif 'lvo' in cohort:\n", " ax = axs[0, 1]\n", " ax_cumsum = axs[1, 1]\n", " dist_no_treat = dict_no_treat['lvo']['values']\n", " dist_cumsum_no_treat = dict_no_treat['lvo']['cumsum']\n", " elif 'treated' in cohort:\n", " ax = axs[0, 2]\n", " ax_cumsum = axs[1, 2]\n", " dist_no_treat = dict_no_treat['weighted_treated']['values']\n", " dist_cumsum_no_treat = dict_no_treat['weighted_treated']['cumsum']\n", " # else:\n", " # ax = axs[0, -1]\n", " # ax_cumsum = axs[1, -1]\n", " # dist_no_treat = dict_no_treat['weighted']['values']\n", " # dist_cumsum_no_treat = dict_no_treat['weighted']['cumsum']\n", "\n", " ax.bar(\n", " np.arange(7) + offsets[0], dist_drip, yerr=std_drip, capsize=2.0,\n", " facecolor=colour_drip, label='Drip & ship', width=bar_width\n", " )\n", " ax.bar(\n", " np.arange(7) + offsets[1], dist_moth, yerr=std_moth, capsize=2.0,\n", " facecolor=colour_moth, label='Mothership', width=bar_width\n", " )\n", " ax.bar(\n", " np.arange(7) + offsets[2], dist_no_treat,\n", " facecolor=colour_no_treat, label='No treatment', width=bar_width\n", " )\n", "\n", " ax_cumsum.plot(np.arange(7), dist_cumsum_drip, color=colour_drip, linestyle='-', label='Drip & ship')\n", " ax_cumsum.plot(np.arange(7), dist_cumsum_moth, color=colour_moth, linestyle='--', label='Mothership')\n", " ax_cumsum.plot(np.arange(7), dist_cumsum_no_treat, color=colour_no_treat, linestyle=':', label='No treatment')\n", "\n", " if c == 2:\n", " ax.legend(bbox_to_anchor=(1.0, 0.5), loc='center left')\n", " ax_cumsum.legend(bbox_to_anchor=(1.0, 0.5), loc='center left')\n", " legend_drawn = True\n", "\n", "for i, ax_list in enumerate(axs):\n", " ylim = [0, 0.4] if i == 0 else [0.0, 1.05]\n", " for j, ax in enumerate(ax_list):\n", " ax.set_ylim(*ylim)\n", " ax.set_xticks(range(7))\n", " if (j > 0): # & (j < len(ax_list) - 1):\n", " ax.set_yticklabels([])\n", "\n", "axs[0, 0].set_title('nLVO')\n", "axs[0, 1].set_title('LVO')\n", "axs[0, 2].set_title('Treated ischaemic population')\n", "# axs[0, -1].set_title('Total\\nischaemic population')\n", "\n", "axs[0, 0].set_ylabel('Probability')\n", "# axs[0, -1].set_ylabel('Probability')\n", "# axs[0, -1].yaxis.set_tick_params(labelleft=True) # turn the tick labels back on\n", "axs[0, 1].set_xlabel('mRS')\n", "# axs[0, -1].set_xlabel('mRS')\n", "\n", "axs[1, 0].set_ylabel('Cumulative probability')\n", "# axs[1, -1].set_ylabel('Cumulative probability')\n", "# axs[1, -1].yaxis.set_tick_params(labelleft=True) # turn the tick labels back on\n", "axs[1, 1].set_xlabel('mRS')\n", "# axs[1, -1].set_xlabel('mRS')\n", "\n", "# axs[0, 3].axis('off')\n", "# axs[1, 3].axis('off')\n", "\n", "plt.savefig(os.path.join(dir_output, 'mrs_dists_redirection_areas.png'), bbox_inches='tight')\n", "plt.show()" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Find mean values\n", "\n", "Import utility scores" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "utility_dists, utility_dists_notes = (\n", " stroke_outcome.outcome_utilities.import_utility_dists_from_file())\n", "\n", "utility_weights = utility_dists.loc['Wang2020'].values" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [], "source": [ "dist_dicts = {\n", " 'drip_ship': dict_drip_ship,\n", " 'mothership': dict_mothership,\n", " 'no_treat': dict_no_treat\n", "}" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [], "source": [ "df_means = pd.DataFrame()\n", "\n", "for scenario, dist_dict in dist_dicts.items():\n", " for cohort, d_dict in dist_dict.items():\n", " \n", " if 'nlvo' in cohort:\n", " dist_no_treat = dict_no_treat['nlvo']['values']\n", " elif 'lvo' in cohort:\n", " dist_no_treat = dict_no_treat['lvo']['values']\n", " elif 'treated' in cohort:\n", " dist_no_treat = dict_no_treat['weighted_treated']['values']\n", " else:\n", " print('help')\n", " # dist_no_treat = dict_no_treat['weighted']['values']\n", "\n", " mean_mrs_no_treat = np.mean(dist_no_treat * np.arange(7))\n", " mean_util_no_treat = np.mean(dist_no_treat * utility_weights)\n", " mrsleq2_no_treat = np.sum(dist_no_treat[:3])\n", " \n", " dist = d_dict['values']\n", " ind = f'{scenario}_{cohort}'\n", " df_means.loc[ind, 'mean_mrs'] = np.mean(dist * np.arange(7))\n", " df_means.loc[ind, 'mean_util'] = np.mean(dist * utility_weights)\n", " df_means.loc[ind, 'mrsleq2'] = np.sum(dist[:3])\n", " df_means.loc[ind, 'mean_mrs_shift'] = (\n", " df_means.loc[ind, 'mean_mrs'] - mean_mrs_no_treat)\n", " df_means.loc[ind, 'mean_util_shift'] = (\n", " df_means.loc[ind, 'mean_util'] - mean_util_no_treat)\n", " df_means.loc[ind, 'mrsleq2_shift'] = (\n", " df_means.loc[ind, 'mrsleq2'] - mrsleq2_no_treat)" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
mean_mrsmean_utilmrsleq2mean_mrs_shiftmean_util_shiftmrsleq2_shift
drip_ship_nlvo_ivt0.2348590.1021720.705080-0.0908560.0165090.125080
drip_ship_lvo_mix0.4511400.0615460.368350-0.0688600.0140310.103350
drip_ship_weighted_treated0.3438970.0816890.535310-0.0797730.0152600.114129
mothership_nlvo_ivt0.2429640.1007700.694310-0.0827500.0151070.114310
mothership_lvo_mix0.4193770.0675320.413060-0.1006230.0200160.148060
mothership_weighted_treated0.3319100.0840120.552510-0.0917600.0175820.131329
no_treat_nlvo0.3257140.0856630.5800000.0000000.0000000.000000
no_treat_lvo0.5200000.0475160.2650000.0000000.0000000.000000
no_treat_weighted_treated0.4236700.0664300.4211810.0000000.0000000.000000
\n", "
" ], "text/plain": [ " mean_mrs mean_util mrsleq2 mean_mrs_shift \\\n", "drip_ship_nlvo_ivt 0.234859 0.102172 0.705080 -0.090856 \n", "drip_ship_lvo_mix 0.451140 0.061546 0.368350 -0.068860 \n", "drip_ship_weighted_treated 0.343897 0.081689 0.535310 -0.079773 \n", "mothership_nlvo_ivt 0.242964 0.100770 0.694310 -0.082750 \n", "mothership_lvo_mix 0.419377 0.067532 0.413060 -0.100623 \n", "mothership_weighted_treated 0.331910 0.084012 0.552510 -0.091760 \n", "no_treat_nlvo 0.325714 0.085663 0.580000 0.000000 \n", "no_treat_lvo 0.520000 0.047516 0.265000 0.000000 \n", "no_treat_weighted_treated 0.423670 0.066430 0.421181 0.000000 \n", "\n", " mean_util_shift mrsleq2_shift \n", "drip_ship_nlvo_ivt 0.016509 0.125080 \n", "drip_ship_lvo_mix 0.014031 0.103350 \n", "drip_ship_weighted_treated 0.015260 0.114129 \n", "mothership_nlvo_ivt 0.015107 0.114310 \n", "mothership_lvo_mix 0.020016 0.148060 \n", "mothership_weighted_treated 0.017582 0.131329 \n", "no_treat_nlvo 0.000000 0.000000 \n", "no_treat_lvo 0.000000 0.000000 \n", "no_treat_weighted_treated 0.000000 0.000000 " ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_means" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Save a copy of data behind the figure\n", "\n", "Keep a copy of the separate LVO cohorts even though the figure only shows the combined LVO cohort.\n", "\n", "Add the no-treatment distributions into the starting data:" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [], "source": [ "for key, value in dict_no_treat.items():\n", " ind = f'no_treatment_{key}'\n", " df_mrs_national_noncum.loc[ind] = value\n", " df_mrs_national_std.loc[ind] = pd.NA" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [], "source": [ "# Save to file:\n", "df_mrs_national_noncum.to_csv(os.path.join(dir_output, 'fig_data_mrs_dists.csv'))\n", "df_mrs_national_std.to_csv(os.path.join(dir_output, 'fig_data_mrs_dists_std.csv'))" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [], "source": [ "df_means.to_csv(os.path.join(dir_output, 'fig_data_mrs_dists_means.csv'))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Conclusions\n", "\n", "For nLVO, the mRS distributions are weighted slightly lower (less disability) for the drip-and-ship scenario. For LVO, they are weighted lower (less disability) for the mothership scenario. For the combined cohort, the mothership scenario just wins out. This is most easily seen by looking at which scenario is highest on the cumulative probability plots." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.16" }, "vscode": { "interpreter": { "hash": "a0926c079b4c466635c292471a3e821b7c06121d6fcbcec81aabb07ff30350cc" } } }, "nbformat": 4, "nbformat_minor": 4 }