Random Forest Classifier - Fitting to all stroke teams together#

Aims#

Assess accuracy of a random forests classifier, using k-fold (5-fold) training/test data splits (each data point is present in one and only one of the five test sets). This notebook fits all data in a single model, with hospital ID being a one-hot encoded feature.

The notebook includes:

  • A range of accuracy scores

  • Receiver operating characteristic (ROC) and Sensitivity-Specificity Curves

  • Identify feature importances

  • Performing a learning rate test (relationship between training set size and accuracy)

Import libraries#

# Turn warnings off to keep notebook tidy
import warnings
warnings.filterwarnings("ignore")

import os
import matplotlib.pyplot as plt
from matplotlib.lines import Line2D
import numpy as np
import pandas as pd

from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import auc
from sklearn.metrics import roc_curve

Import data#

Data has previously been split into 5 training/test splits.

data_loc = '../data/kfold_5fold/'
train_data, test_data = [], []

for i in range(5):
    
    train_data.append(pd.read_csv(data_loc + 'train_{0}.csv'.format(i)))
    test_data.append(pd.read_csv(data_loc + 'test_{0}.csv'.format(i)))

Functions#

Calculate accuracy measures#

def calculate_accuracy(observed, predicted):
    
    """
    Calculates a range of accuracy scores from observed and predicted classes.
    
    Takes two list or NumPy arrays (observed class values, and predicted class 
    values), and returns a dictionary of results.
    
     1) observed positive rate: proportion of observed cases that are +ve
     2) Predicted positive rate: proportion of predicted cases that are +ve
     3) observed negative rate: proportion of observed cases that are -ve
     4) Predicted negative rate: proportion of predicted cases that are -ve  
     5) accuracy: proportion of predicted results that are correct    
     6) precision: proportion of predicted +ve that are correct
     7) recall: proportion of true +ve correctly identified
     8) f1: harmonic mean of precision and recall
     9) sensitivity: Same as recall
    10) specificity: Proportion of true -ve identified:        
    11) positive likelihood: increased probability of true +ve if test +ve
    12) negative likelihood: reduced probability of true +ve if test -ve
    13) false positive rate: proportion of false +ves in true -ve patients
    14) false negative rate: proportion of false -ves in true +ve patients
    15) true positive rate: Same as recall
    16) true negative rate: Same as specificity
    17) positive predictive value: chance of true +ve if test +ve
    18) negative predictive value: chance of true -ve if test -ve
    
    """
    
    # Converts list to NumPy arrays
    if type(observed) == list:
        observed = np.array(observed)
    if type(predicted) == list:
        predicted = np.array(predicted)
    
    # Calculate accuracy scores
    observed_positives = observed == 1
    observed_negatives = observed == 0
    predicted_positives = predicted == 1
    predicted_negatives = predicted == 0
    
    true_positives = (predicted_positives == 1) & (observed_positives == 1)
    
    false_positives = (predicted_positives == 1) & (observed_positives == 0)
    
    true_negatives = (predicted_negatives == 1) & (observed_negatives == 1)
    
    false_negatives = (predicted_negatives == 1) & (observed_negatives == 0)
    
    accuracy = np.mean(predicted == observed)
    
    precision = (np.sum(true_positives) /
                 (np.sum(true_positives) + np.sum(false_positives)))
        
    recall = np.sum(true_positives) / np.sum(observed_positives)
    
    sensitivity = recall
    
    f1 = 2 * ((precision * recall) / (precision + recall))
    
    specificity = np.sum(true_negatives) / np.sum(observed_negatives)
    
    positive_likelihood = sensitivity / (1 - specificity)
    
    negative_likelihood = (1 - sensitivity) / specificity
    
    false_positive_rate = 1 - specificity
    
    false_negative_rate = 1 - sensitivity
    
    true_positive_rate = sensitivity
    
    true_negative_rate = specificity
    
    positive_predictive_value = (np.sum(true_positives) / 
                            (np.sum(true_positives) + np.sum(false_positives)))
    
    negative_predictive_value = (np.sum(true_negatives) / 
                            (np.sum(true_negatives) + np.sum(false_negatives)))
    
    # Create dictionary for results, and add results
    results = dict()
    
    results['observed_positive_rate'] = np.mean(observed_positives)
    results['observed_negative_rate'] = np.mean(observed_negatives)
    results['predicted_positive_rate'] = np.mean(predicted_positives)
    results['predicted_negative_rate'] = np.mean(predicted_negatives)
    results['accuracy'] = accuracy
    results['precision'] = precision
    results['recall'] = recall
    results['f1'] = f1
    results['sensitivity'] = sensitivity
    results['specificity'] = specificity
    results['positive_likelihood'] = positive_likelihood
    results['negative_likelihood'] = negative_likelihood
    results['false_positive_rate'] = false_positive_rate
    results['false_negative_rate'] = false_negative_rate
    results['true_positive_rate'] = true_positive_rate
    results['true_negative_rate'] = true_negative_rate
    results['positive_predictive_value'] = positive_predictive_value
    results['negative_predictive_value'] = negative_predictive_value
    
    return results

Find model probability threshold to match predicted and actual thrombolysis use#

def find_threshold(probabilities, true_rate):
    
    """
    Find classification threshold to calibrate model
    """
    
    index = (1-true_rate)*len(probabilities)
    
    threshold = sorted(probabilities)[int(index)]
    
    return threshold

Line intersect#

Used to find point of sensitivity-specificity curve where sensitivity = specificity.

def get_intersect(a1, a2, b1, b2):
    """ 
    Returns the point of intersection of the lines passing through a2,a1 and b2,b1.
    a1: [x, y] a point on the first line
    a2: [x, y] another point on the first line
    b1: [x, y] a point on the second line
    b2: [x, y] another point on the second line
    """
    s = np.vstack([a1,a2,b1,b2])        # s for stacked
    h = np.hstack((s, np.ones((4, 1)))) # h for homogeneous
    l1 = np.cross(h[0], h[1])           # get first line
    l2 = np.cross(h[2], h[3])           # get second line
    x, y, z = np.cross(l1, l2)          # point of intersection
    if z == 0:                          # lines are parallel
        return (float('inf'), float('inf'))
    return (x/z, y/z)

Fit model (k-fold)#

# Set up list to store models and calibarion threshold
single_models = []
thresholds = []

# Set up lists for observed and predicted
observed = []
predicted_proba = []
predicted = []

# Set up list for feature importances
feature_importance = []

# Loop through k folds
for k_fold in range(5):
    
    # Get k fold split
    train = train_data[k_fold]
    test = test_data[k_fold]
    
    # Get X and y
    X_train = train.drop('S2Thrombolysis', axis=1)
    X_test = test.drop('S2Thrombolysis', axis=1)
    y_train = train['S2Thrombolysis']
    y_test = test['S2Thrombolysis']
    
    # One hot encode hospitals
    X_train_hosp = pd.get_dummies(X_train['StrokeTeam'], prefix = 'team')
    X_train = pd.concat([X_train, X_train_hosp], axis=1)
    X_train.drop('StrokeTeam', axis=1, inplace=True)
    X_test_hosp = pd.get_dummies(X_test['StrokeTeam'], prefix = 'team')
    X_test = pd.concat([X_test, X_test_hosp], axis=1)
    X_test.drop('StrokeTeam', axis=1, inplace=True)    
    
    # Define model
    forest = RandomForestClassifier(
        n_estimators=100, n_jobs=-1, class_weight='balanced', random_state=42)
    
    # Fit model
    forest.fit(X_train, y_train)
    single_models.append(forest)
    
    # Get feature importances
    importance = forest.feature_importances_
    feature_importance.append(importance)
    
    # Get predicted probabilities
    y_probs = forest.predict_proba(X_test)[:,1]
    observed.append(y_test)
    predicted_proba.append(y_probs)
    
    # Calibrate model and get class
    true_rate = np.mean(y_test)
    threshold = find_threshold(y_probs, true_rate)
    thresholds.append(threshold)
    y_class = y_probs >= threshold
    y_class = np.array(y_class) * 1.0
    predicted.append(y_class)
    
    # Print accuracy
    accuracy = np.mean(y_class == y_test)
    print (
        f'Run {k_fold}, accuracy: {accuracy:0.3f}, threshold {threshold:0.3f}')
Run 0, accuracy: 0.846, threshold 0.460
Run 1, accuracy: 0.844, threshold 0.460
Run 2, accuracy: 0.845, threshold 0.450
Run 3, accuracy: 0.849, threshold 0.470
Run 4, accuracy: 0.847, threshold 0.460

Results#

Accuracy measures#

# Set up list for results
k_fold_results = []

# Loop through k fold predictions and get accuracy measures
for i in range(5):
    results = calculate_accuracy(observed[i], predicted[i])
    k_fold_results.append(results)
    
# Put results in DataFrame
single_fit_results = pd.DataFrame(k_fold_results).T
single_fit_results
0 1 2 3 4
observed_positive_rate 0.295232 0.295401 0.295176 0.295080 0.295417
observed_negative_rate 0.704768 0.704599 0.704824 0.704920 0.704583
predicted_positive_rate 0.296300 0.299674 0.296582 0.295305 0.297610
predicted_negative_rate 0.703700 0.700326 0.703418 0.704695 0.702390
accuracy 0.845665 0.844147 0.844541 0.848524 0.847456
precision 0.737761 0.732833 0.735545 0.743145 0.740034
recall 0.740430 0.743434 0.739048 0.743712 0.745527
f1 0.739093 0.738095 0.737292 0.743429 0.742770
sensitivity 0.740430 0.743434 0.739048 0.743712 0.745527
specificity 0.889749 0.886371 0.888720 0.892399 0.890192
positive_likelihood 6.715843 6.542633 6.641363 6.911724 6.789391
negative_likelihood 0.291734 0.289457 0.293627 0.287190 0.285863
false_positive_rate 0.110251 0.113629 0.111280 0.107601 0.109808
false_negative_rate 0.259570 0.256566 0.260952 0.256288 0.254473
true_positive_rate 0.740430 0.743434 0.739048 0.743712 0.745527
true_negative_rate 0.889749 0.886371 0.888720 0.892399 0.890192
positive_predictive_value 0.737761 0.732833 0.735545 0.743145 0.740034
negative_predictive_value 0.891099 0.891779 0.890496 0.892683 0.892972
single_fit_results.T.describe()
observed_positive_rate observed_negative_rate predicted_positive_rate predicted_negative_rate accuracy precision recall f1 sensitivity specificity positive_likelihood negative_likelihood false_positive_rate false_negative_rate true_positive_rate true_negative_rate positive_predictive_value negative_predictive_value
count 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000
mean 0.295261 0.704739 0.297094 0.702906 0.846067 0.737864 0.742430 0.740136 0.742430 0.889486 6.720191 0.289574 0.110514 0.257570 0.742430 0.889486 0.737864 0.891806
std 0.000146 0.000146 0.001659 0.001659 0.001880 0.003978 0.002631 0.002789 0.002631 0.002199 0.140742 0.003184 0.002199 0.002631 0.002631 0.002199 0.003978 0.001042
min 0.295080 0.704583 0.295305 0.700326 0.844147 0.732833 0.739048 0.737292 0.739048 0.886371 6.542633 0.285863 0.107601 0.254473 0.739048 0.886371 0.732833 0.890496
25% 0.295176 0.704599 0.296300 0.702390 0.844541 0.735545 0.740430 0.738095 0.740430 0.888720 6.641363 0.287190 0.109808 0.256288 0.740430 0.888720 0.735545 0.891099
50% 0.295232 0.704768 0.296582 0.703418 0.845665 0.737761 0.743434 0.739093 0.743434 0.889749 6.715843 0.289457 0.110251 0.256566 0.743434 0.889749 0.737761 0.891779
75% 0.295401 0.704824 0.297610 0.703700 0.847456 0.740034 0.743712 0.742770 0.743712 0.890192 6.789391 0.291734 0.111280 0.259570 0.743712 0.890192 0.740034 0.892683
max 0.295417 0.704920 0.299674 0.704695 0.848524 0.743145 0.745527 0.743429 0.745527 0.892399 6.911724 0.293627 0.113629 0.260952 0.745527 0.892399 0.743145 0.892972

Receiver Operator Characteristic and Sensitivity-Specificity Curves#

Receiver Operator Characteristic Curve:

# Set up lists for results
k_fold_fpr = [] # false positive rate
k_fold_tpr = [] # true positive rate
k_fold_thresholds = [] # threshold applied
k_fold_auc = [] # area under curve

# Loop through k fold predictions and get ROC results 
for i in range(5):
    fpr, tpr, thresholds = roc_curve(observed[i], predicted_proba[i])
    roc_auc = auc(fpr, tpr)
    k_fold_fpr.append(fpr)
    k_fold_tpr.append(tpr)
    k_fold_thresholds.append(thresholds)
    k_fold_auc.append(roc_auc)
    print (f'Run {i} AUC {roc_auc:0.4f}')

# Show mean area under curve  
mean_auc = np.mean(k_fold_auc)
sd_auc = np.std(k_fold_auc)
print (f'\nMean AUC: {mean_auc:0.4f}')
print (f'SD AUC: {sd_auc:0.4f}')
Run 0 AUC 0.9141
Run 1 AUC 0.9143
Run 2 AUC 0.9107
Run 3 AUC 0.9158
Run 4 AUC 0.9132

Mean AUC: 0.9136
SD AUC: 0.0017

Sensitivity-specificity curve:

k_fold_sensitivity = []
k_fold_specificity = []


for i in range(5):
    # Get classificiation probabilities for k-fold replicate
    obs = observed[i]
    proba = predicted_proba[i]
    
    # Set up list for accuracy measures
    sensitivity = []
    specificity = []
    
    # Loop through increments in probability of survival
    thresholds = np.arange(0.0, 1.01, 0.01)
    for cutoff in thresholds: #  loop 0 --> 1 on steps of 0.1
        # Get classificiation using cutoff
        predicted_class = proba >= cutoff
        predicted_class = predicted_class * 1.0
        # Call accuracy measures function
        accuracy = calculate_accuracy(obs, predicted_class)
        # Add accuracy scores to lists
        sensitivity.append(accuracy['sensitivity'])
        specificity.append(accuracy['specificity'])
    
    # Add replicate to lists
    k_fold_sensitivity.append(sensitivity)
    k_fold_specificity.append(specificity)

Combined plot:

fig = plt.figure(figsize=(10,5))

# Plot ROC
ax1 = fig.add_subplot(121)
for i in range(5):
    ax1.plot(k_fold_fpr[i], k_fold_tpr[i], color='orange')
ax1.plot([0, 1], [0, 1], color='darkblue', linestyle='--')
ax1.set_xlabel('False Positive Rate')
ax1.set_ylabel('True Positive Rate')
ax1.set_title('Receiver Operator Characteristic Curve')
text = f'Mean AUC: {mean_auc:.3f}'
ax1.text(0.64,0.07, text, 
         bbox=dict(facecolor='white', edgecolor='black'))
plt.grid(True)

# Plot sensitivity-specificity
ax2 = fig.add_subplot(122)
for i in range(5):
    ax2.plot(k_fold_sensitivity[i], k_fold_specificity[i])
ax2.set_xlabel('Sensitivity')
ax2.set_ylabel('Specificity')
ax2.set_title('Sensitivity-Specificity Curve')
plt.grid(True)


plt.tight_layout(pad=2)
plt.savefig('./output/rf_single_fit_roc_sens_spec.jpg', dpi=300)

plt.show()
../_images/random_forest_single_fit_27_0.png

Identify cross-over of sensitivity and specificity#

sens = np.array(k_fold_sensitivity).mean(axis=0)
spec = np.array(k_fold_specificity).mean(axis=0)
df = pd.DataFrame()
df['sensitivity'] = sens
df['specificity'] = spec
df['spec greater sens'] = spec > sens

# find last index for senitivity being greater than specificity 
mask = df['spec greater sens'] == False
last_id_sens_greater_spec = np.max(df[mask].index)
locs = [last_id_sens_greater_spec, last_id_sens_greater_spec + 1]
points = df.iloc[locs][['sensitivity', 'specificity']]

# Get intersetction with line of x=y
a1 = list(points.iloc[0].values)
a2 = list(points.iloc[1].values)
b1 = [0, 0]
b2 = [1, 1]

intersect = get_intersect(a1, a2, b1, b2)[0]
print(f'\nIntersect: {intersect:0.3f}')
Intersect: 0.837

Collate and save results#

hospital_results = []
kfold_result = []
threshold_results = []
observed_results = []
prob_results = []
predicted_results = []

for i in range(5):
    hospital_results.extend(list(test_data[i]['StrokeTeam']))
    kfold_result.extend(list(np.repeat(i, len(test_data[i]))))
    threshold_results.extend(list(np.repeat(thresholds[i], len(test_data[i]))))
    observed_results.extend(list(observed[i]))
    prob_results.extend(list(predicted_proba[i]))
    predicted_results.extend(list(predicted[i]))    
    
single_model = pd.DataFrame()
single_model['hospital'] = hospital_results
single_model['observed'] = np.array(observed_results) * 1.0
single_model['prob'] = prob_results
single_model['predicted'] = predicted_results
single_model['k_fold'] = kfold_result
single_model['threshold'] = threshold_results
single_model['correct'] = single_model['observed'] == single_model['predicted']

# Save
filename = './predictions/single_fit_rf_k_fold.csv'
single_model.to_csv(filename, index=False)

Feature Importances#

Get Random Forest feature importances (average across k-fold results)

features = X_test.columns.values

# Get average feature importance from k-fold
importances = np.array(feature_importance).mean(axis = 0)
feature_importance = pd.DataFrame(data = importances, index=features)
feature_importance.columns = ['weight']

# Sort by importance (weight)
feature_importance.sort_values(by='weight', ascending=False, inplace=True)

# Save
feature_importance.to_csv('output/rf_single_fit_feature_importance.csv')

# Display top 25
feature_importance.head(25)
weight
S2BrainImagingTime_min 0.105244
S2NihssArrival 0.084499
S2StrokeType_Primary Intracerebral Haemorrhage 0.059939
S2StrokeType_Infarction 0.058449
S1OnsetToArrival_min 0.041828
S1OnsetTimeType_Best estimate 0.032571
S2RankinBeforeStroke 0.024724
FacialPalsy 0.023538
S1OnsetTimeType_Precise 0.023233
S1AgeOnArrival 0.022156
BestLanguage 0.019905
Dysarthria 0.015824
AFAnticoagulent_Yes 0.014479
ExtinctionInattention 0.013959
MotorLegLeft 0.013853
MotorArmLeft 0.013309
Sensory 0.012653
MotorArmRight 0.012405
MotorLegRight 0.011693
Visual 0.011608
LocQuestions 0.009992
S1OnsetDateType_Precise 0.009232
Loc 0.008269
LimbAtaxia 0.008156
BestGaze 0.007948

Line chart:

# Set up figure
fig = plt.figure(figsize=(8,8))
ax = fig.add_subplot(111)

# Get labels and values
labels = feature_importance.index.values[0:25]
val = feature_importance['weight'].values[0:25]

# Plot
ax.plot(val, marker='o')
ax.set_ylabel('Feature Feature importance')
ax.set_xticks(np.arange(len(labels)))
ax.set_xticklabels(labels)

# Rotate the tick labels and set their alignment.
plt.setp(ax.get_xticklabels(), rotation=90, ha="right",
         rotation_mode="anchor")

plt.tight_layout()
plt.savefig('output/rf_single_fit_feature_weights_line.jpg', dpi=300)
plt.show()
../_images/random_forest_single_fit_35_0.png

Bar chart:

# Set up figure
fig = plt.figure(figsize=(8,8))
ax = fig.add_subplot(111)

# Get labels and values
labels = feature_importance.index.values[0:25]
pos = np.arange(len(labels))
val = feature_importance['weight'].values[0:25]

# Plot
ax.bar(pos, val)
ax.set_ylabel('Feature importance')
ax.set_xticks(np.arange(len(labels)))
ax.set_xticklabels(labels)

# Rotate the tick labels and set their alignment.
plt.setp(ax.get_xticklabels(), rotation=90, ha="right",
         rotation_mode="anchor")

plt.tight_layout()
plt.savefig('output/rf_single_fit_feature_weights_bar.jpg', dpi=300)
plt.show()
../_images/random_forest_single_fit_37_0.png

Learning cvurve#

Examine the relationship between training data size and accuracy.

# Set up list to collect results
results_training_size = []
results_accuracy = []
results_all_accuracy = []

# Get maximum training size (number of training records)
max_training_size = train_data[0].shape[0]

# Construct training sizes (values closer at lower end)
train_sizes = [50, 100, 250, 500, 1000, 2500]
for i in range (5000, max_training_size, 5000):
    train_sizes.append(i)

# Loop through training sizes
for train_size in train_sizes:
    
    # Record accuracy across k-fold replicates
    replicate_accuracy = []

    for replicate in range(5):
        
        # Get training and test data (from first k-fold split)
        train = train_data[0]
        test = test_data[0]
        
        # One hot encode hospitals
        train_hosp = pd.get_dummies(train['StrokeTeam'], prefix = 'team')
        train = pd.concat([train, train_hosp], axis=1)
        train.drop('StrokeTeam', axis=1, inplace=True)
        test_hosp = pd.get_dummies(test['StrokeTeam'], prefix = 'team')
        test = pd.concat([test, test_hosp], axis=1)
        test.drop('StrokeTeam', axis=1, inplace=True) 
        
        # Sample from training data
        train = train.sample(n=train_size)

        # Get X and y
        X_train = train.drop('S2Thrombolysis', axis=1)
        X_test = test.drop('S2Thrombolysis', axis=1)
        y_train = train['S2Thrombolysis']
        y_test = test['S2Thrombolysis']        
   
    
        # Define model
        forest = RandomForestClassifier(n_estimators=100, n_jobs=-1, 
                            class_weight='balanced', random_state=42)

        # Fit model
        forest.fit(X_train, y_train)

        # Predict test set
        y_pred_test = forest.predict(X_test)

        # Get accuracy and record results
        accuracy = np.mean(y_pred_test == y_test)
        replicate_accuracy.append(accuracy)
        results_all_accuracy.append(accuracy)
    
    # Store mean accuracy across the k-fold splits
    results_accuracy.append(np.mean(replicate_accuracy))
    results_training_size.append(train_size)

k_fold_accuracy = np.array(results_all_accuracy).reshape(len(train_sizes), 5)

Plot learning curve

fig = plt.figure(figsize=(10,5))

ax1 = fig.add_subplot(121)

for i in range(5):
    ax1.plot(results_training_size, k_fold_accuracy[:, i])

ax1.set_xlabel('Training set size')
ax1.set_ylabel('Accuracy)')

# Focus on first 5000
ax2 = fig.add_subplot(122)
for i in range(5):
    ax2.plot(results_training_size, k_fold_accuracy[:, i])

ax2.set_xlabel('Training set size')
ax2.set_ylabel('Accuracy')
ax2.set_xlim(0, 5000)

plt.tight_layout()
plt.savefig('./output/rf_single_learning_curve.jpg', dpi=300)
plt.show()
../_images/random_forest_single_fit_41_0.png

Calibration and assessment of accuracy when model has high confidence#

# Collate results in Dataframe
reliability_collated = pd.DataFrame()

# Loop through k fold predictions
for i in range(5):
    
    # Get observed class and predicted probability
    obs = observed[i]
    prob = predicted_proba[i]
    
    # Bin data with numpy digitize (this will assign a bin to each case)
    step = 0.10
    bins = np.arange(step, 1+step, step)
    digitized = np.digitize(prob, bins)
        
    # Put single fold data in DataFrame
    reliability = pd.DataFrame()
    reliability['bin'] = digitized
    reliability['probability'] = prob
    reliability['observed'] = obs
    classification = 1 * (prob > 0.5 )
    reliability['correct'] = obs == classification
    reliability['count'] = 1
    
    # Summarise data by bin in new dataframe
    reliability_summary = pd.DataFrame()

    # Add bins and k-fold to summary
    reliability_summary['bin'] = bins
    reliability_summary['k-fold'] = i

    # Calculate mean of predicted probability of thrombolysis in each bin
    reliability_summary['confidence'] = \
        reliability.groupby('bin').mean()['probability']

    # Calculate the proportion of patients who receive thrombolysis
    reliability_summary['fraction_positive'] = \
        reliability.groupby('bin').mean()['observed']
    
    # Calculate proportion correct in each bin
    reliability_summary['fraction_correct'] = \
        reliability.groupby('bin').mean()['correct']
    
    # Calculate fraction of results in each bin
    reliability_summary['fraction_results'] = \
        reliability.groupby('bin').sum()['count'] / reliability.shape[0]   
    
    # Add k-fold results to DatafRame collation
    reliability_collated = reliability_collated.append(reliability_summary)
    
# Get mean results
reliability_summary = reliability_collated.groupby('bin').mean()
reliability_summary.drop('k-fold', axis=1, inplace=True)
reliability_summary
confidence fraction_positive fraction_correct fraction_results
bin
0.1 0.035168 0.012448 0.987552 0.382793
0.2 0.140320 0.097869 0.902131 0.132894
0.3 0.246070 0.224113 0.775887 0.093199
0.4 0.348774 0.360290 0.639710 0.059464
0.5 0.444610 0.480207 0.519793 0.057575
0.6 0.545598 0.601522 0.595156 0.059543
0.7 0.651610 0.701646 0.701646 0.072182
0.8 0.750906 0.809804 0.809804 0.066211
0.9 0.841047 0.874736 0.874736 0.061353
1.0 0.921081 0.932452 0.932452 0.014776

Plot results:

fig = plt.figure(figsize=(10,5))


# Plot predicted prob vs fraction psotive
ax1 = fig.add_subplot(1,2,1)

# Loop through k-fold reliability results
for i in range(5):
    mask = reliability_collated['k-fold'] == i
    k_fold_result = reliability_collated[mask]
    x = k_fold_result['confidence']
    y = k_fold_result['fraction_positive']
    ax1.plot(x,y, color='orange')
# Add 1:1 line
ax1.plot([0,1],[0,1], color='k', linestyle ='--')
# Refine plot
ax1.set_xlabel('Model probability')
ax1.set_ylabel('Fraction positive')
ax1.set_xlim(0, 1)
ax1.set_ylim(0, 1)

# Plot accuracy vs probability
ax2 = fig.add_subplot(1,2,2)
# Loop through k-fold reliability results
for i in range(5):
    mask = reliability_collated['k-fold'] == i
    k_fold_result = reliability_collated[mask]
    x = k_fold_result['confidence']
    y = k_fold_result['fraction_correct']
    ax2.plot(x,y, color='orange')
# Refine plot
ax2.set_xlabel('Model probability')
ax2.set_ylabel('Fraction correct')
ax2.set_xlim(0, 1)
ax2.set_ylim(0, 1)

ax3 = ax2.twinx()  # instantiate a second axes that shares the same x-axis
for i in range(5):
    mask = reliability_collated['k-fold'] == i
    k_fold_result = reliability_collated[mask]
    x = k_fold_result['confidence']
    y = k_fold_result['fraction_results']
    ax3.plot(x,y, color='blue')
    
ax3.set_xlim(0, 1)
ax3.set_ylim(0, 0.5)
ax3.set_ylabel('Fraction of samples')

custom_lines = [Line2D([0], [0], color='orange', alpha=0.6, lw=2),
                Line2D([0], [0], color='blue', alpha = 0.6,lw=2)]

plt.legend(custom_lines, ['Fraction correct', 'Fraction of samples'],
          loc='upper center')

plt.tight_layout(pad=2)
plt.savefig('./output/rf_single_reliability.jpg', dpi=300)
plt.show()
../_images/random_forest_single_fit_46_0.png

Get accuracy of model when model is at least 80% confident

bins = [0.1, 0.2, 0.9, 1.0]
acc = reliability_summary.loc[bins].mean()['fraction_correct']
frac = reliability_summary.loc[bins].sum()['fraction_results']

print ('For samples with at least 80% confidence:')
print (f'Proportion of all samples: {frac:0.3f}')
print (f'Accuracy: {acc:0.3f}')
For samples with at least 80% confidence:
Proportion of all samples: 0.592
Accuracy: 0.924

Observations#

  • Overall accuracy = 84.6% (92.4% for those 59% samples with at least 80% confidence of model)

  • Using nominal threshold (50% probability), specificity (89%) is greater than sensitivity (74%)

  • The model can achieve 83.7% sensitivity and specificity simultaneously

  • ROC AUC = 0.914

  • Only marginal improvements are made above a training set size of 30k

  • Key features predicting use of thrombolysis are:

    • Time from arrival to scan

    • Stroke severity on arrival

    • Stroke type

    • Onset to arrival time

    • Onset time type (precise vs. best estimate)

    • Disability before stroke

  • The model shows good calibration of probability vs. fraction positive