Summary of model base parameters#

Import libraries and read data

import pandas as pd
data = pd.read_csv('output/performance_base.csv')

Get descriptive statistics, and save

stats = data.describe().T
stats.to_csv('./output/base_parameters_stats.csv')
stats
count mean std min 25% 50% 75% max
thrombolysis_rate 132.0 0.114536 0.035449 0.015306 0.093239 0.109547 0.133314 0.243174
admissions 132.0 572.777778 277.416470 101.000000 377.666667 544.166667 755.083333 2039.333333
80_plus 132.0 0.425635 0.056416 0.292308 0.387089 0.427573 0.457896 0.576220
onset_known 132.0 0.665679 0.134064 0.344784 0.573593 0.641978 0.752881 0.988275
known_arrival_within_4hrs 132.0 0.600743 0.089733 0.257034 0.557876 0.608542 0.662325 0.813584
onset_arrival_mins_mu 132.0 4.571655 0.098500 3.767890 4.530071 4.579801 4.628630 4.763117
onset_arrival_mins_sigma 132.0 0.559729 0.121209 0.435067 0.516637 0.547310 0.585710 1.800721
scan_within_4_hrs 132.0 0.947503 0.030163 0.847328 0.932828 0.953808 0.969191 1.000000
arrival_scan_arrival_mins_mu 132.0 3.279822 0.409251 1.665700 3.029675 3.309899 3.572156 4.235924
arrival_scan_arrival_mins_sigma 132.0 0.941438 0.220601 0.549301 0.787521 0.890961 1.034230 1.751363
onset_scan_4_hrs 132.0 0.874621 0.043245 0.627178 0.852508 0.876833 0.904059 0.962230
eligable 132.0 0.338312 0.082637 0.111111 0.276355 0.331651 0.398860 0.531940
scan_needle_mins_mu 132.0 3.425993 0.342337 2.572714 3.204064 3.426290 3.676980 4.408589
scan_needle_mins_sigma 132.0 0.689888 0.156039 0.366017 0.579162 0.661771 0.793168 1.282829